期刊文献+

重积分的积分区域和积分微元变换法

Transformation of Integral Region and Integral Differential Element in Multiple Integrals
下载PDF
导出
摘要 将重积分的换元法更名为积分区域和积分微元变换法,修正了定理中的条件,指出变换积分区域和微元的结果可以使重积分中的变限积分变成定积分,从而降低了积分难度.文中还证明了将直角坐标转换成极坐标,广义极坐标,球面坐标,柱面坐标,广义柱面坐标,虽然积分微元形状和面积均发生了变化,但积分区域不变. The change of variable in a multiple integral is renamed as the transformation of integral region and integral differential element in multiple integrals.There is some revision for conditions in the theorem.It should be pointed out that the results of transformation of integral region and differential element can turn the variable limit integral of multiple integrals into definite integral,which reduces the difficulty of integrals indeed.It is also proved that the Cartesian coordinates can be transformed into polar coordinates,generalized polar coordinates,spherical coordinates,cylindrical coordinates,generalized cylindrical coordinates.The integral region is unchanged though the shape and area of integral differential element are changed.
出处 《西华师范大学学报(自然科学版)》 2012年第1期102-105,共4页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅基金项目(10ZB018) 西华师范大学基金项目(11A028 11A029)
关键词 重积分 雅可比行列式 积分区域变换 积分微元变换 Multiple Integrals Jacobi Determinant Transformation of Integral Region Transformation of Integral Differential Element
  • 相关文献

参考文献6

  • 1吉林大学数学系.数学分析(上、中、下)[M].北京:人民教育出版社,1978.
  • 2陈传璋等.数学分析(第二版)[M].北京:高等教育出版社,1983.
  • 3吉林师范大学数学系.数学分析(上、下册)[M].北京:人民教育出版社,1966.
  • 4T.M.菲赫金哥尔茨.微积分学教程(中译本)[M].北京:人民教育出版社,1956.
  • 5武汉大学数学系.数学分析[M].北京:人民教育出版社,1979.
  • 6项凤涛,王正志,吴第旻,岳达.捷联系统四元数姿态解算的精细积分法[J].四川兵工学报,2010,31(5):103-106. 被引量:13

二级参考文献6

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部