期刊文献+

基于分集群的欠采样数据分类方法

下载PDF
导出
摘要 针对非平衡数据集的分类问题,本文提出在欠采样法的基础上使用分类集群的改进方法,以提高非平衡数据集中对少数类的分类的正确率。通过实验表明,该方法可行有效。
出处 《科技信息》 2012年第7期201-201,210,共2页 Science & Technology Information
  • 相关文献

参考文献3

  • 1Chawla N,Bowyer k,Hall L,et al.SMOTE:Synthetic Minority Over-samplingTechnique.Journal of Artificilal Intelligence Research,2002,16:321-357.
  • 2陈思,郭躬德,陈黎飞.基于聚类融合的不平衡数据分类方法[J].模式识别与人工智能,2010,23(6):772-780. 被引量:28
  • 3Tomek,I.Two Modifications of CNN.IEEE Transactions on Systems Man andCommunications SMC-6(1976):769-772.

二级参考文献27

  • 1Kotsiantis S,Kanellopoulos D,Pintelas P.Handling Imbalanced Datasets:A Review.GESTS International Trans on Computer Science and Engineering,2006,30(1):25-36.
  • 2Burez J,van den Poel D.Handling Class Imbalance in Customer Churn Prediction.Expert Systems with Applications,2009,36(3):4626-4636.
  • 3Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:Synthetic Minority Over-Sampling Technique.Journal of Artificial Intelligence Research,2002,16(1):321-357.
  • 4Han Hui,Wang Wenyuan,Mao Binghuan.Borderline-SMOTE:A New Over-Sampling Method in Imbalanced Data Sets Learning // Proc of the International Conference on Intelligent Computing.Hefei,China,2005:878-887.
  • 5Guo Hongyu,Viktor H L.Learning from Imbalanced Data Sets with Boosting and Data Generation:the DataBoost-IM Approach.ACM SIGKDD Explorations Newsletter,2004,6(1):30-39.
  • 6Chawla N V,Lazarevic A,Hall L O,et al.SMOTEBoost:Improving Prediction of the Minority Class in Boosting // Proc of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases.Dubrovnik,Croatia,2003:107-119.
  • 7Garcìa S,Herrera F.Evolutionary Undersampling for Classification with Imbalanced Datasets:Proposals and Taxonomy.Evolutionary Computation,2009,17(3):275-306.
  • 8Joshi M V,Kumar V,Agarwal R.Evaluating Boosting Algorithms to Classify Rare Classes:Comparison and Improvements // Proc of the 1st IEEE International Conference on Data Mining.San Jose,USA,2001:257-264.
  • 9Cieslak D A,Chawla N V.Learning Decision Trees for Unbalanced Data // Proc of the European Conference on Machine Learning and Knowledge Discovery in Databases.Antwerp,Belgium,2008:241-256.
  • 10Fernández A,del Jesus M J,Herrera F.Hierarchical Fuzzy Rule Based Classification Systems with Genetic Rule Selection for Imbalanced Data-Sets.International Journal of Approximate Reasoning,2009,50(3):561-577.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部