期刊文献+

P_4-等可覆盖的路和圈及M_3-等可覆盖的路和圈

H-equicoverable Paths and Cycles for P_4 and M_3
下载PDF
导出
摘要 若图G的每个极小H-覆盖都是它的最小H-覆盖,则称图G为H-等可覆盖.P3-等可覆盖图和M2-等可覆盖图的特征已经被刻画.主要刻画P4-等可覆盖路,P4-等可覆盖圈,M3-等可覆盖路和M3-等可覆盖圈的特征. A graph is called H-equicoverable if every minimal H-covering in G is also a minimum H-covering in G.All M2-equicoverable graphs and P3-equicoverable graphs have been characterized.P4-equicoverable paths,P4-equicoverable cycles,M3-equicoverable paths and M3-equicoverable cycles are characterized.
作者 张连娣
机构地区 天津大学理学院
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期112-114,共3页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10926071 11001196)
关键词 覆盖 等可覆盖 匹配 covering;equicoverable;path;cycle;matching
  • 相关文献

参考文献10

  • 1ZHANG Y Q,SUN Y J.Equipackable Paths and Cycles[J].Ars Combinatoria,2009,93:387-391.
  • 2BEINEKE L W,HAMBERGER P,GODDARD W D.Random Packings of Graphs[J].Discrete Mathematics,1994,125(1/2/3):45-54.
  • 3HARTNELL B L,VESTERGAARD P D.Equipackable Graphs[J].Bulletin of the Institute of Combinatorics and Its Applica-tions,2006,46:35-48.
  • 4VESTERGAARD P D.A Short Update on Equipackable Graphs[J].Discrete Mathematics,2008,308(2/3):161-165.
  • 5ZHANG Y Q,FAN Y H.Equipackable Graphs[J].Discrete Applied Mathematics,2006,154(12):1766-1770.
  • 6MOLINA R.On Randomly Decomposable Graphs[J].Congressus Numerantium,2001,148:207-221.
  • 7RUIZ S.Randomly Decomposable Graphs[J].Discrete Mathematics,1985,57(1/2):123-128.
  • 8BIALOSTOCKI A,RODITTY Y.Docomposition of a Graph[J].Acta Mathematica Hungarica,1982,40:201-208.
  • 9ZHANG Y Q.Equicoverable Graphs:Reasearch on Equicoverable Graphs[J].Discrete Applied Mathematics,2008,156(5):647-661.
  • 10张玉琴,兰文华.几类特殊的M_2-等可覆盖图[J].天津大学学报,2009,42(1):83-85. 被引量:2

二级参考文献7

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M] . London: The MacMillan Press Ltd, 1976.
  • 2Ruiz S. Randomly decomposable graphs [J].Discrete Mathematics, 1985,57 (1/2) : 123-128.
  • 3Beineke L W, Hamberger P, Goddard W D. Random packings of graphs [J].Discrete Mathematics, 1994, 125 ( 1/2/3 ) : 45-54.
  • 4Hartnell B L, Vestergaard P D. Equipackable graphs [J]. Bull Inst Combin Apl, 2006,46:35-48.
  • 5Vestergaard P D. A short update on equipackable graphs [J]. Discrete Mathematics, 2008,308(2/3): 161-165.
  • 6Zhang Yuqin, Fan Yonghui. M2-equipackable graphs [J]. Discrete Applied Mathematics, 2006, 154(12): 1766-1770.
  • 7Zhang Yuqin. P3-equicoverable graphs:Research on Hequicoverable graphs [J]. Discrete Applied Mathematics, 2008,156 (5) : 647-661.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部