期刊文献+

一种自适应改变惯性权重的粒子群算法 被引量:9

An Adaptive Changed Inertia Weight Particle Swarm Algorithm
下载PDF
导出
摘要 针对标准粒子群算法收敛性和收敛速度的问题,分析标准粒子群算法惯性参数对算法性能优化的影响,提出一种自适应改变惯性权重的粒子群算法(ACPSO)。通过对粒子速度和位置变化过程的分析,并结合早熟收敛程度和个体适应值自适应地调整惯性权重,使得算法能在全局收敛性和收敛速度之间找到良好的平衡关系,并且通过典型的函数测试,表明此方法有效地控制了粒子群的多样性,而且具有良好的收敛速度。 Aimed at convergence and convergence rate of the standard particle swarm algorithm,analyzing inertial parameters of the standard particle swarm algorithm affects the performance optimization,an adaptive change in inertia weight of particle swarm optimization algorithm(ACPSO) is proposed.By analyzing the particle velocity and the process of the changing position,combined with the degree of premature convergence and individual adaptive value adjust the inertia weight,the algorithm has a good balance between the global convergence and convergence rate.And a typical function test shows that this method is effective in controlling the particle swarm diversity,and it also has good convergence rate.
出处 《科学技术与工程》 北大核心 2012年第9期2205-2208,共4页 Science Technology and Engineering
关键词 粒子群算法 惯性权重 自适应 particle swarm algorithm inertia weight adaptive
  • 相关文献

参考文献10

二级参考文献75

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 3窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 4高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 5潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 6Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 7Shi Yuhui,Eberhart R C.A modified particle swarm optimizer[C].Proc of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1998:69-73.
  • 8Chatterjee A,Siarry ENonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers and Operations Research,2006,33(3):859-871.
  • 9Zhan Z H,Zhang J.Adaptive particle swarm optimization[C].The Sixth International Conference on Ant Colony Optimization and Swarm Intelligence,2008:227-234.
  • 10Suganthan P N.Particle swarm optimizer with neighborhood operator[C].Proc of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1958-1962.

共引文献364

同被引文献98

引证文献9

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部