期刊文献+

G'/G方法构造三维空间中Klein-Gordon-Zakharov方程的精确解 被引量:2

G′/G Method and Exact Solutions to the Coupled Klein-Gordon-Zakharov Equations in Three Dimensional Space
下载PDF
导出
摘要 结合齐次平衡原理,运用G'/G展开方法,借助于计算机代数系统Mathematica构造了三维空间中Klein-Gordon-Zakharov方程的一系列显示精确解。这些解包括包络型孤立波解、双曲函数解、三角函数解以及有理函数解。 Based on homogeneous balance method, G'/G expansion method was used to obtain new explicit exact solutions of coupled Klein-Gordon-Zakharov equations in three dimensional space with the aid of Mathematica. The solitary wave solutions, hyperbolic function solutions, trigonometric function solutions and rational function solutions were included in these solutions.
作者 曹瑞
机构地区 菏泽学院数学系
出处 《贵州大学学报(自然科学版)》 2012年第1期20-22,共3页 Journal of Guizhou University:Natural Sciences
关键词 Klein-Gordon-Zakharov方程 G'/G展开方法 精确解 齐次平衡法 Klein-Gordon-Zakharov equations G'/G expansion method exact solution homogeneous balance method
  • 相关文献

参考文献8

  • 1Weiss J,Tabor M,Carnevale G.The Painleve’s property for partialdifferential equations[J].J Math Phys,1983(24):522.
  • 2Parkes EJ,Duffy BR.An automated tanh-function method for find-ing solitary solutions to nonlinear evolution equations[J].Comput.Phys commun,1996(98):288-300.
  • 3Liu SK,Fu ZT,Liu SD,et al.Jacobi elliptic function expansionmethod and periodic wave solutions of nonlinear wave equations[J].Phys Lett A,2001(289):69-74.
  • 4曹瑞.耦合Klein-Gordon-Zakharov方程组的新精确解[J].贵州大学学报(自然科学版),2010,27(6):22-24. 被引量:3
  • 5L.X.Li,M.L.Wang.The(G/G')-expansion method and travel-ling wave solutions for a higher-order nonlinear schrodinger equation[J].Appl.Math.Comput,2009(208):440-445.
  • 6Dendy R O.Plasma Dynamics[M].Oxford:Oxford UniversityPress,1990.
  • 7Zakharov V E.Collapse of Langmuir waves[J].Sov Phys JETP,1972(35):908-914.
  • 8Ozawa T,Tsutaya K,Tsutsumi Y.Well-posedness in energy spacefor the Cauchy problem of the Klein-Gordon-Zakharov equation withdifferent propagation speeds in three space dimensions[J].MathAnn,1999(313):127-207.

二级参考文献10

  • 1Weiss J,Tabor M,Carnevale G.The Painleve's property for partial differential equations[J].J Math Phys,1983(24):522.
  • 2Wang ML,Zhou YB,Li ZB.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Phys Lett A,1996(216):67-75.
  • 3Parkes EJ,Duffy BR.An automated tanh-function method for finding solitary solutions to nonlinear evolution equations[J].Comput Phys commun,1996(98):288-300.
  • 4Yan CT.A simple transformation for nonlinear waves[J].Phys Lett A,1996(224):77-84.
  • 5Liu SK,Fu ZT,Liu SD,et al.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys Lett A,2001(289):69-74.
  • 6Zhou YB,Wang ML,Wang YM.Periodic wave solutions to a coupled Kdv equations with variable coefficients[J].Phys Lett A,2003(308):31.
  • 7Dendy R O.Plasma Dynamics[M].Oxford:Oxford University Press,1990.
  • 8Zakharov V E.Collapse of Langmuir waves[J].Sov Phys JETP,1972(35):908-914.
  • 9Ozawa T,Tsutaya K,Tsutsumi Y.Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equation with different propagation speeds in three space dimensions[J].Math Ann,1999(313):127-207.
  • 10曹瑞.改进的F-展开方法和藕合非线性Klein-Gordon方程的精确解[J].兰州大学学报(自然科学版),2007,43(6):112-116. 被引量:9

共引文献2

同被引文献22

  • 1夏娟,崔俭春,尚亚东.一类三阶非线性波动方程丰富的显式精确解[J].广州大学学报(自然科学版),2009,8(6):16-19. 被引量:3
  • 2杨志坚.一类三阶拟线性发展方程的整体解[J].高校应用数学学报(A辑),1998,13(1):31-38. 被引量:4
  • 3陈翰林,鲜大权.Klein-Gordon-Zakharov方程组的周期波解[J].应用数学学报,2006,29(6):1139-1144. 被引量:6
  • 4Byrd P F, Fridman M D. Handbook of elliptic integrals for engineers and scientists[ M]. Berlin: Springer, 1971.
  • 5Dendy R O. Plasma Dynamics[ M]. Oxford: Oxford University Press, 1990.
  • 6Zakharov V E. Collapse of Langmuir wave[ J]. Sir Phys JETP, 1972, 35:908 - 914.
  • 7Triki H, Boucerredj N. Soliton solutions of the Klein-Gordon-Zakharov equations with power law nonlinearity [ J ]. Applied Mathematics and Computation, 2014, 227:341 -346.
  • 8Ekici M, Duran D, Sonmezoglu A. Soliton Solutions of the Klein-Gordon-Zakharov Equation with Power Law Nonlinearity [ J]. ISRN Computational Mathematics, 2013: 716279.
  • 9Wang M L, Zhang J L, Li X Z. Solitary Wave Solutions of a Generalized Derivative Nonlinear Schrodinger Equation[ J ]. Commun Theor Phys, 2005, 50:39 - 42.
  • 10WANG M L, ZHOU Y B. Application of homogeneous balance method to exact solutions of nonlinear evolution equation in mathe- matical physics [ J ]. Phys Lett, 1996, A516 (5) :67 - 75.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部