期刊文献+

一种基于MP-tree的频繁路径挖掘算法 被引量:1

An algorithm for frequent paths mining based on MP-tree
下载PDF
导出
摘要 针对应用射频识别(radio frequency identification,RFID)技术产生的海量数据,引入挖掘频繁路径的思想,提出挖掘频繁路径的算法MP(movement path)-mine.该算法通过构建MP-tree的形式,只须扫描数据库一次就可以挖掘出所有的频繁移动路径,便于快速向用户提供物品移动趋势方面的信息.理论分析和实验结果表明该算法性能非常有效. Aiming at the great amount of data generated by radio frequency identification(RFID) technology,the author introduces the idea of frequent paths mining and proposes the algorithm MP(movement path)-mine for frequent paths mining.By constructing MP-tree,this algorithm only needs to scan the database once to mine all the frequent movement paths.It is to the benefit of providing the information of objects movement trend to users.It is proved to be effective through the theoretical analysis and experimental results.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期56-59,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61070047 61070133) 江苏省自然科学基金资助项目(BK2009697 BK2010318) 江苏省"六大人才高峰"基金资助项目 江苏省高校自然科学基金资助项目(08KJB520012)
关键词 射频识别 频繁路径 移动模式 radio frequency identification frequent paths movement patterns
  • 相关文献

参考文献10

  • 1陈竹西,孙艳,胡孔法,陈峻.基于路径编码的RFID数据压缩技术研究[J].扬州大学学报(自然科学版),2008,11(2):53-56. 被引量:5
  • 2GONZALEZ H,HAN Jia-wei,LI Xiao-lei,et al.Warehousing and analyzing massive RFID data sets[C]//Proceedings of the 22nd International Conference on Data Engineering.Washington,DC:IEEE Computer Socie-ty,2006:83.
  • 3CHAWATHE S S,KRISHNAMURTHY V,RAMACHANDRAN S,et al.Managing RFID data[C]//Pro-ceedings of the 30th International Conference on Very Large Data Bases.Toronto:Morgan Kaufmann,2004:1189-1195.
  • 4PARK Sung-mee,SONG Jeong-hwan,KIM Chae-soo,et al.Load balancing method using connection pool inRFID middleware[C]//Proceedings of the Fifth ACIS International Conference on Software Engineering Re-search,Management and Applications.Busan:[s.n.],2007:132-137.
  • 5AL-JAROODI J,AZIZ J,MOHAMED N.Middleware for RFID systems:an overview[C]//Proceedings of the2009 33rd Annual IEEE International Computer Software and Applications Conference.Washington,DC:IEEEComputer Society,2009:154-159.
  • 6WANG Jian-yong,HAN Jia-wei.BIDE:efficient mining of frequent closed sequences[C]//Proceedings of 20thInternational Conference on Data Engineering.Boston:IEEE Computer Society,2004:79-90.
  • 7ZHANG Hong-jiang,YANG Qiang,SU Zhong.WhatNext:aprediction system for web requests using N-gramsequence models[C]//Proceedings of the First International Conference on Web Information Systems and Engi-neering.Washington,DC:IEEE Computer Society,2000:200-207.
  • 8HAN Jia-wei,PEI Jian,YIN Yi-wen.Mining frequent patterns without candidate generation[C]//Proceedingsof the ACM SIGMOD International Conference on Management of Data.New York,NY:ACM,2000:1-12.
  • 9PORKODI R,BHUVANESWARI V,RAJESH R,et al.An improved association rule mining technique forXML data using XQUERY and apriori algorithm[C]//Proceedings of the 2009IEEE International AdvanceComputing Conference.Patiala:[s.n.],2009:1510-1514.
  • 10SHI Yong-ge,ZHOU Yi-qun.An improved apriori algorithm[C]//Proceedings of 2010IEEE InternationalConference on Granular Computing.Washington,DC:IEEE Computer Society,2010:759-762.

二级参考文献8

  • 1CHAWATHE S S, KRISHNAMURTHY V, RAMA- CHANDRAN S, et al. Managing RFID data [C]// NASCIMENTO M, OZSU M, KOSSMANN D, et al. VLDB' 2004. Toronto: Morgan Kaufmann, 2004: 1189-1195.
  • 2WANG F, LIU P. Temporal management of RFID data [C]// BOHM K, JENSEN C, HAAS L, et al. VLDB'2005. Trondheim: ACM, 2005: 1128-1139.
  • 3DERAKHSHAN R, ORLOWSKA M E, LI X. RFID data management: challenges and opportunities [C]// MAKI L, HUETTNER B. IEEE RFID 2007. Dallas: [s.n. ], 2007: 175-182.
  • 4李战怀 聂艳明 陈群 等.RFID数据管理的研究进展.中国计算机学会通讯,2007,8(8):50-58.
  • 5中华人民共和国科学技术部等十五部委.中国射频识别(RFID)技术政策白皮书[EB/OL].(2006-06-09)[2008-05-21].http://www.eetchina.com/ARTICLES/2006JUN/PDF/CHINARFIDWHITEPAPER.PDF.
  • 6GONZALEZ H, HAN J, LI X, et al. Warehousing and analysis of massive RFID data sets [C]// LIU L, REUTER A, WHANG K, et al. ICDE'2006. Atlanta: IEEE Computer Society, 2006: 83-92.
  • 7GONZALEZ H, HAN J, LI X. Flowcube: constructing RFID flowcubes for multi-dimensional analysis of commodity flows [C]// DAYAL U, WHANG K, LOMET D, et al. VLDB'2006. Seoul: ACM, 2006: 834- 845.
  • 8GONZALEZ H, HAN J, LI X. Mining compressed commodity workflows from massive RFID data sets [C]// YU P, TSOTRAS V, FOX E, et al. CIKM'2006. Arlington: ACM, 2006: 162-171.

共引文献4

同被引文献7

  • 1楼窕玉.机场门禁网络管理系统建设和应用[J].中国安防,2008(5):45-47. 被引量:1
  • 2Gonzalez H,Han J, Li X. Flowcube: constructing RFID flow cubes for multi-dimensional analysis of commodity flows [ C ]//Proceedings of the 2006 International Conference on Very Large Data, San Francisco, Cal, USA : Morgan Kanufmann ,2006:834 - 835.
  • 3Porkodl R, Bhuvanesw Arl V, Rajesh R, et al. An improved association rule mining technique for XML data using XQUERY and Apriori algo- rithm [ C ]//Proceedings of the 2009 IEEE International Advance Com- puting Conference, Patiala: [ s. n. ] ,2009:1510 - 1514.
  • 4Shi Yongge,Zhou Yiqun. An improved apriori algorithm [ C ]//Proceed- ing of 2010 IEEE International Conference on Granular Computing, IEEE Computer Society, 2010:759 - 762.
  • 5Jia Yubo, Xia Guanghu, Zhang Qian, et al. An Improved Apriori Algo- rithm Based on Association Analysis[ C]//Proceedings of 2012 Third International Conference on Networking and Distributed Computing, 2012,208 -211.
  • 6陈竹西,胡孔法,陈崚,宋爱波.现代物流系统中的频繁封闭路径挖掘算法[J].计算机集成制造系统,2009,15(4):809-816. 被引量:12
  • 7汪林林,范军.基于PrefixSpan的序列模式挖掘改进算法[J].计算机工程,2009,35(23):56-58. 被引量:13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部