期刊文献+

基于样本库的人脸图像处理方法

Human Face Super-Resolution Method Based on Train-Database
下载PDF
导出
摘要 本文给出了一种基于样本库的人脸图像超分辨率方法,这一方法结合了人脸图像全局相似性和局部特征相似性的约束.局部结构的相似性将超分辨率解约束到人脸局部结构空间,不同尺度上的局部相似性指导搜索最优解,然后将局部结构重建的人脸图像投影到由人脸图像确定的特征人脸空间.实验结果表明该算法得到的人脸具有很好的准确性和视觉效果. In this paper, we propose a human face super-resolution method based on training. This method composes similarity constrains of human face both in global and local manner. The local structure of human face ensures the solution of super-resolution to be in the space characterized by human face local structure. And the local structure in different scales instruct the searching to the optimal solution, then project the reconstructed face by local structure to the eigenface space determined by given human face database. Experiments show that the results have very good accuracy and high visual quality.
出处 《影像科学与光化学》 CAS CSCD 北大核心 2012年第2期142-149,共8页 Imaging Science and Photochemistry
关键词 图像超分辨率 人脸样本库 局部结构相似性 结构搜索 投影 image super-resolution human face database similarity of human face in localstructure structure searching project
  • 相关文献

参考文献11

  • 1Katsaggelos A K(Ed.).Digital Image Restoration[M].Springer-Verlag.1989.
  • 2Kang M G,Katsaggelos A K.Simultaneous multichannel image restoration and estimation of the regularizationparameters[J].IEEE Transactions on Image Processing,1997,6(5):774-778.
  • 3Schultz R R,Stevenson R L.A bayesian approach to image expansion for improved definition[J].IEEETransactions on Image Processing,1994,3(3):233-242.
  • 4Schultz R R,Stevenson R L.Extraction of high-resolution frames from video sequence[J].IEEE Transactionson Image Processing,1996,5(6):996-1011.
  • 5Sezan A M,Tekalp A.Superresolution video reconstruction with arbitary sampling lattices and nonzero aperturetime[J].IEEE Transactions on Image Processing,1997,6(8):1064-1076.
  • 6Nguyen N,Milanfar P.A wavelet-based interpolation-restoration method for superresolution[J].CircuitsSystems and Signal Process,2000,19(40):321-338.
  • 7Baker S,Kanade T.Limits on super-resolution and how to break them[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2002,24(9):1167-1183.
  • 8Strombeck J R.Superresolution with artificial neural networks[EB/OL].[2007-10-09].http://www.dd.chalmers.se/-f96jost/superresolution/superresolution.htm.
  • 9Chang H,Yeung D Y,Xiong Y M.Super-resolution through neighbor embedding[C].2004 IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition(CVPR’04)-Volume 1,2004.275-282.
  • 10Gunturk B K,Batur A U,Altunbasak Y,Hayes M H,Mersereau R M.Eigenface-domain super-resolution forface recognition[J].IEEE Transactions on Image Processing,2003,12(5),597-606.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部