摘要
运用临界功率理论,结合龙舟项目运动员不同距离的供能特点,探索应用龙舟测功仪训练运动员体能的手段,确立了龙舟运动员P-t、D-t、D-P、P-D-1数学模型,找到不同距离临界功率训练的区间。研究表明:1)P-t模型成非线性,曲线底端接近临界功率点。2)D-t模型成线性,直线的斜率代表了临界功率值。3)D-P模型成非线性,临界功率(CP)值是这个双曲线函数的一支渐近线与功率(横轴)的交点。4)P-D-1模型成线性,截距代表了运动员的有氧工作能力,函数的斜率代表了运动员的无氧工作能力。
By applying the critical power theory, coupled with the characteristics of energy supply by dragon boat event players at different distances, the authors probed into means to train the physical capacity of the players by applying a dragon boat dynamometer, established mathematical models P t, D-t, D-P and P-D^-1 for dragon boat players, found intervals for critical power training at different distances, and revealed the following findings: l) model P-t is nonlinear; the curve bottom is close to the critical power point; 2) model D-t is linear; the slope of the straight line represents the critical power value; 3) model D-P is nonlinear; the critical power value (CP) is the point of intersection of a asymptote of this hyperbola function and the power (horizontal axis); 4) model P-Dl is linear; the intercept represents the aerobic working ability of the players, while the slope of the function represents the anaerobic working ability of the players.
出处
《体育学刊》
CAS
CSSCI
北大核心
2012年第2期120-123,共4页
Journal of Physical Education
关键词
运动训练
龙舟运动
临界功率
sports training
dragon boat
critical power