期刊文献+

边界点矩特征傅里叶描述的马铃薯薯形研究 被引量:6

Study on Shape of Potatoes Based on Dividing Point's Proper of Matrix's Fourier Descriptor
下载PDF
导出
摘要 马铃薯的形状是马铃薯分级的重要指标之一。针对适用于实时图像处理的目标识别系统,本文提出了一种结合矩特征和傅立叶描述子的形状识别新方法。该方法以质心为中心将物体划分为多个扇形区域,计算各扇形区域的矩特征值获得表示物体形状的矩特征序列,再通过离散傅立叶变换得到具有平移、旋转以及比例不变性的归一化矩特征傅立叶描述子,采用相似度计算进行形状分类。实验结果表明,该方法对目标形状的平移、旋转和比例变换具有不变性,能准确地将马铃薯的形状分为椭圆、圆和畸形三类,准确率分别为90%,93.3%,100%,识别率较高,具有良好的应用前景。 Shape of potato is one of the important index of potato's classification. Amming at the object recognising system of real time figure processing, this article came up with a new shape recognising method which combined proper of matrix and Fourier descriptor. This method took center of mass as focus and divided object into many fan regions, computed the proper value of matrix of every fan region and got the proper of matrix series which can show objecCs shape. Then the normalization proper of matrix Fourier descriptor which was invariable thouth translation, rotation and proportion invariant was gotten via discrete Fourier Transformation. And shapes were classified thougth simi- larity calculation. The experimental result demonstrated that this method can make translation, rotation and proportion transformation un- changeable. And it can define shape of potatos as round, elliptical and anamorphotic accurately, accuracy rate are 90%, 93.3%, 100% respectively. Which has high recognition rate and a promising application prospect.
出处 《中国农机化》 北大核心 2012年第2期59-62,共4页 Chinese Agricul Tural Mechanization
基金 内蒙古自治区自然基金项目(2010BS0905)--基于机器视觉的马铃薯品质检测与种薯筛选技术研究
关键词 机器视觉 边界点 矩特征 傅里叶描述子 相似度 马铃薯薯形检测 machine vision boundary point proper value of matrix fourier descriptor similarity test of potatos shape
  • 相关文献

参考文献10

  • 1Y Tao,C T Morrow,P H Heinemann,H J Sommer.Fourier-basedseparation technique for Shape grading of potatoes using machinevision[J]. Transactionsofthe ASAE,1995,38(3):949-957.
  • 2J C Noordam,W Otten,A J M Timmermans,B.High seedpotato grading and quality inspection based on a color visionsystem[C]. SIE proceedings,2000:206-217.
  • 3郝敏,麻硕士,郝小冬.基于Zernike矩的马铃薯薯形检测[J].农业工程学报,2010,26(2):347-350. 被引量:44
  • 4S O Belkasim,M Shridhar,M Ahmadi.Pattern recognition withmoment invariant comparative study and new results[J]. PatternRecogniton,1991,24:1117-1138.
  • 5潘泉,程咏梅,杜亚娟,张洪才.离散不变矩算法及其在目标识别中的应用[J].电子与信息学报,2001,23(1):30-36. 被引量:38
  • 6阮秋琦.数字图像处理(MATLAB)[M]. 电子工业出版社2005,353-359.
  • 7C T Zahn,R Z Roskies.Fourier descriptors for plane closedcurves[J]. IEEE Trans on Computers,1972,21:269-281.
  • 8王涛,刘文印,孙家广,张宏江.傅立叶描述子识别物体的形状[J].计算机研究与发展,2002,39(12):1714-1719. 被引量:85
  • 9董武,李树祥.矩特征的一种快速算法[J].中国图象图形学报(A辑),1999,4(10):860-864. 被引量:11
  • 10H Kauppien, T Sepanen. An experiment Comparison of autoregressive and Fourier-based descriptors in 2D shape classification [J]. IEEE Trans on PAM I, 1995, 2: 201-207.

二级参考文献12

共引文献172

同被引文献103

  • 1孙金风,李小昱,汪成龙,洪云端,王苗.马铃薯无损检测技术的研究进展[J].湖北农业科学,2012,51(22):4974-4977. 被引量:5
  • 2吕东亚,黄普明,孙献璞.高光谱图像的数据特征及压缩技术[J].空间电子技术,2005,2(1):15-22. 被引量:7
  • 3庞江伟,应义斌.机器视觉在水果缺陷检测中的研究现状[J].农机化研究,2006,28(9):47-49. 被引量:7
  • 4Cheng Y, Haugh C G. Detecting hollow heart in potatoes using ultra- sound [J]. Transsaetions of the ASAE, 1994, 37(1) : 217-222.
  • 5Hosainpour A, Komarizade M H, Mahmoudi A, et al. High speed detection of potato and clod using an acoustic based intelli gent system[J]. Expert Systemswith Applications, 2011, 38 (10): 12 101-12 106.
  • 6赫敏.基于机器视觉的马铃薯外部品质检测技术研究[D].呼和浩特:内蒙古农业大学,2009.
  • 7Zhou L Y, Chalana V, Kim Y M. PC-based machine vision sys tern for real-time computer aided potato inspection [J]. Interna- tional Journal of Imaging Systems and Technology, 1998, 9(6): 423-433.
  • 8A1-Mallahi A, Kataoka T, Okamoto H. Discrimination between potato tubers and clods by detecting the significant wavebands [J]. Biosystems Engineering, 2008, 100(3): 329-337.
  • 9Dacal-Nieto A, Vazquez-Fernandez E, Formella A, et al. A ge- netic algorithm approach for feature selection in potatoes classi- fication by computer vision[C]//35th Annual Conference of theIEEE. Porto: IEEE, 2009:1 955-1 960.
  • 10A1-Mallahi A, Kataoka T, Okamoto H, et al. Detection of po- tato tubers using an ultraviolet imaging based machine vision system[J]. Biosystems Engineering, 2010, 105(2) : 257-265.

引证文献6

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部