期刊文献+

基于泛化傅里叶描述子的运动目标检测

Moving Object Detection Based on Generic Fourier Descriptor
下载PDF
导出
摘要 提出了一种两层运动目标检测算法.基于普通模型的第一层检测从当前帧中粗略地分割出运动目标.第二层检测包括两部分:首先,从粗略分割和所有历史分割中提取运动目标的泛化傅里叶描述子,然后基于描述子相似性度量,从历史分割中提取和粗略分割相似程度较高的部分组成新模型,并基于新模型得到第二层检测结果.普通模型与新模型均使用概率建模方法,两层检测均使用图分割技术.实验结果表明了该方法的有效性. This paper proposes a two-stage moving object detection algorithm.Rough detection of moving object is obtained in the first stage based on an ordinary probabilistic model in the current frame.There are two steps in the second detection stage.First,the generic Fourier descriptor is extracted from both the rough detection and past detections to describe the silhouette of the moving object.And then by comparing the silhouettes between current and past frames,silhouettes most similar to current frame are selected to form a new probabilistic model.Finally,the detection result is obtained according to the new probabilistic model in the second stage.Moreover,graph cut algorithm is used during the two-stage detection process.Experiment results show that this method is effective.
作者 辛明 李声威
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2012年第2期198-202,共5页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(No.60972119)
关键词 运动目标检测 傅里叶描述子 概率建模 图分割 moving object detection Fourier descriptor probabilistic model graph cut
  • 相关文献

参考文献9

  • 1C Stauffer,W E L Grimson.Learning patterns of activityusing real-time tracking[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 2A Elgammal,R Duraiswami.Background and foreground modeling using non-parametric kernel density estimation forvisual surveillance[C].Proceeding of IEEE,2002:1151-1163.
  • 3Sun J,Zhang W,Tang X,et al.Shum,Background cut[C].Proc.European Conf.Computer Vision,2006.
  • 4A Mittal,N Paragios.Motion-based background subtraction using adaptive kernel density estimation[C].Proceeding ofComputer Vision and Pattern Recognition,2004.
  • 5A Criminisi,G Cross,A Blake,et al.Bilayer segmentation of live video[C].Proceeding of Computer Vision and PatternRecognition,2006.
  • 6Z Yin,R Collins.Belief propagation in a 3Dspatio temporal MRF for moving object detection[C].Proceeding of ComputerVision and Pattern Recognition,2007.
  • 7Zhang X,Yang J.Foreground segmentation based on selective foreground model,Electronics Letters[J],2008,44(14):851-852.
  • 8Zhang D,Lu G.Generic Fourier descriptor for shape based image retrieval[C].Proceeding of IEEE Conference onMultimedia and Expo,2002.
  • 9Y Boykov,O Veksler,R Zabih.Fast approximate energy minimization via graph cuts[J].IEEE Trans.Pattern Analysisand Machine Intelligence,2001,23(11):1222-1239.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部