期刊文献+

布尔矩阵平方根的一些性质 被引量:4

Some Properties of Square Roots for a Boolean Matrix
下载PDF
导出
摘要 布尔矩阵的平方根问题是一个到目前为止尚未解决的组合问题.既没有一个通用的准则可以用来判断一个布尔矩阵是否有平方根,对于有平方根的布尔矩阵也没有一种快速的方法构造出其平方根.从布尔矩阵的结构特征出发,首先讨论有平方根的布尔矩阵具有的一些性质,指出布尔矩阵与其平方根在结构上存在的内在联系;基于这些联系,给出两种由已知平方根构造新平方根的方法;最后得到布尔矩阵存在平方根的一个充要条件,并以此给出一种构造布尔矩阵平方根的方法. The problem of finding square roots for a Boolean matrix is one of the classic unsolved problems of combinatorial optimization.Up to now,there has neither method to judge whether a given Boolean matrix has or not square roots,nor method to construct efficiently the square roots of a given Boolean matrix which has square roots.In this paper,at first,some properties of a Boolean matrix which has square roots are given,some intrinsic relations of the Boolean matrix and its square roots are discovered.Then two methods are obtained to construct new square roots based on a given square root.At the end,a necessary and sufficient condition that a Boolean matrix has square roots is given.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期165-168,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171242)资助项目 西南石油大学校级科研基金(190)
关键词 布尔矩阵 平方根 充要条件 Boolean matrix square root sufficient and necessary condition
  • 相关文献

参考文献15

  • 1Kim H K.Boolean Matrix Theory and Applications[M].New York:Marcel Dekker,1982.
  • 2Leszek G,Miroslaw K,Andrzej L.Faster multi-witnesses for Booleanmatrix multiplication[J].Information Processing Letters,2009,109(4):242-247.
  • 3王学平,杨雁.布尔矩阵的可实现问题及其与色数问题的关系[J].高校应用数学学报(A辑),2010,25(1):93-102. 被引量:2
  • 4Jukna S.Representing(0,1)-matrices by boolean circuits[J].Discrete Mathematics,2010,310(1):184-187.
  • 5Lim M H,Tan S C.Rank one preservers between spaces of Boolean matrices[J].Linear Algebra and Its Applications,2011,434(2):526-541.
  • 6de Oliveira G N.Binary Square Roots of Matrices[M].Recife,Brazil:Universidade Federal de Pernambuco,Instituto de Matemat-ica,1971.
  • 7Kim H K,Roush F W.On the hamming distance between Boolean matrices[J].J Combin Info Sys Sci,1978,3:24-28.
  • 8Harary F,Karp R M,Tutte W T.A criterion for planarity of the square of a graph[J].J Combinatorial Theory,1967,2(4):395-405.
  • 9Mukhopadhyay A.The square root of a graph[J].J Combinatorial Theory,1967,2(3):290-295.
  • 10di Nola A,Sessa S,Pedrycz W.Decomposition problem of fuzzy relations[J].Inter J General Systems,1985,10(2):123-133.

二级参考文献54

共引文献6

同被引文献30

  • 1张琳,王学平.模糊关系R的σ分解[J].四川师范大学学报(自然科学版),2007,30(2):151-153. 被引量:6
  • 2Kim K H. Boolean Matrix Theory and Applications[M]. New York: Marcel Dekker, 1982.
  • 3柳柏濂.组合矩阵论,第2版[M]_北京:科学出版社,2005.
  • 4De Oliveira G N. Binary square roots of matrices[M]. Recife: Universidade Federal de Per?nambuco, Instituto de Matematica, Recife, 197I.
  • 5Nola A D, Sessa S, Pedrycz W. Decomposition problem of fuzzy relations(J]. International Journal of General Systems, 1985, 10(2): 123-133.
  • 6Nola A D, Sessa S, Pedrycz W, et al. Minimal and maximal solutions of a decomposition problem offuzzy relations(J]. International Journal of General Systems, 1985, 11(2): 103-116.
  • 7Tommy R J, Bjarne T. Graph Coloring Problems[M]. New York: John Wiley & Sons, Inc. 1995.
  • 8Lewis R, Thompson J. On the application of graph colouring techniques in round-robin sports scheduling[J]. Computers & Operations Research, 2011, 38(1): 190-204.
  • 9Kubale M, Jackowski B. A generalized implicit enumeration algorithm for graph coloring[J]. Communications of the ACM, 1985, 28(4): 412 - 418.
  • 10Diaz I M, Zabala P. A branch-and-cut algorithm for graph coloring[A]. in: Proceedings of the Computational Symposium on Graph Coloring and its Generalization[C]. Ithaca, New York,2002.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部