期刊文献+

一类病菌与免疫系统作用模型的定性分析 被引量:3

Qualitative Analysis of a Model with the Action Between Immune System and Bacteria
下载PDF
导出
摘要 考虑病菌的一种信息交流机理,建立了一类时滞传染病模型.分析了模型平衡点的存在性、渐近稳定性及Hopf分歧的存在性及方向.最后,运用计算机数值模拟验证所得理论结果,为传染病的控制和预防提供了理论基础和数值依据. Taking into account an exchanging information mechanism of bacteria,an epidemic model with time delay is formulated.The existence and stability of positive equilibrium of the model are investigated,and the length of delay preserving the stability of the positive equilibrium is estimated.Moreover,the existence and direction of Hopf bifurcation are discussed.At last,numerical simulations are curried out to verify the theory results.The results obtained in this paper provide a theoretical and numerical basis to control and prevent the epidemic disease.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期202-208,共7页 Journal of Sichuan Normal University(Natural Science)
基金 陕西省自然科学基金(2009JM1002)资助项目
关键词 传染病模型 稳定性 HOPF分歧 时滞 免疫 epidemic model stability Hopf bifurcation time delay immunity
  • 相关文献

参考文献16

  • 1Braselton J P,Waltman P.A competition model with dynamically allocatedinhibitor production[J].Math Biosci,2001,173(2):55-84.
  • 2Dockery J D,Keener J P.A mathematical model for quorum sensing in pseudomonas aeruginosa[J].Bull Math Biol,2001,63(1):95-116.
  • 3Koerber A J,et al.A mathematical model of partial-thickness burn-wound infection by pseudomonas aeruginosa:quorum sens-ing and the build-up to invasion[J].Bull Math Biol,2002,64(2):239-259.
  • 4Fergola P,Beretta E,Cerasuolo M.Some new results on an allelopathic competition model with quorum sensing and delayed toxi-cant production[J].Nonlinear Anal:RWA,2006,7(5):1081-1095.
  • 5Anguige K,King J R,Ward J P.A multi-phase mathematical model of quorum sensing in a maturing pseudomonas aeruginosabiofilm[J].Math Biosci,2006,203(2):240-276.
  • 6MacDonald N.Time Delays in Biological Models[M].Heidelberg:Spring-Verlag,1978.
  • 7Kuang Y.Delay Differential Equations with Applications in Population Dynamics[M].New York:Academic Press,1993.
  • 8Hassard B D,Kazarinoff N D,Wan Y H.Theory and Applications of Hopf Bifurcation[C]//London Mathematics Society LectureNotes.41.Cambridge:Cambridge University Press,1981.
  • 9Xiao M,Cao J D.Stability and Hopf bifurcation in a delayed competitive web sites model[J].Phys Lett,2006,A353:138-150.
  • 10Jiang X W,Zhou X Y,Shi X Y,et al.Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIVinfection of CD4+T-cells[J].Chaos,Solitons and Fractals,2008,38:447-460.

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部