摘要
关于非线性抛物方程解的淬灭以及带点源的抛物方程的爆破问题的研究具有重要的物理意义.对带点源的非线性抛物方程解的淬灭现象进行研究,利用上下解和比较原理的方法给出了这类带有点源的非线性抛物方程解的整体存在和淬灭的充分条件;并证明了在一定初值条件下原点是唯一的淬灭点;最后给出了方程解的淬灭率.
The problem on quenching and blow-up for nonlinear parabolic equation has been researched by worldwide scholars,which have a significant physical background.Finite-time quenching for a nonlinear parabolic equation with localized source under the Dirichlet boundary condition is introduced in this paper.The sufficient condition for quenching and the existence of global solution is obtained by comparison principle.Under some initial conditions,the uniqueness quenching point of the solution is proved.Finally,the quenching rate is shown.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期240-243,共4页
Journal of Sichuan Normal University(Natural Science)
基金
重庆市科委自然科学基金(2010BB9218)资助项目
重庆大学"211"工程三期创新人才培养计划建设项目(S-09110)
关键词
淬灭
点源
淬灭率
quenching
point source
quenching rate