期刊文献+

一种基于分量热力学迁移策略的并行多种群GEP 被引量:3

A Parallel Multipopulation Gene Expression Programming Based on Component Thermodynamical Migration Strategy
下载PDF
导出
摘要 针对传统并行多种群GEP存在着优良个体的传播和种群多样性之间的冲突问题,提出一种基于分量热力学迁移策略的并行多种群GEP算法(CTDPGEP)。该算法在当前子种群中选择出若干个优良个体和若干个随机个体组成精英子空间,并将精英子空间传送至其他各子种群的迁移区中;其他各子种群异步地将其迁移区中的个体采用分量热力学替换规则接收到自己的种群中。通过这种机制不仅有效地传播了各子种群中的优良个体,而且保持了各个子种群的多样性,定量地平衡优良个体的传播与种群多样性之间的冲突,在加快收敛速度的同时保持种群的多样性,减少陷入局部最优的概率。对比实验结果表明该算法表现出更高的求解精度和更快的收敛速度。 Aiming at the disadvantage of traditional parallel multipopulation gene expression programming,namely,the conflict between migration of individuals and diversity of subpopulation,a parallel multipopulation gene expression programming based on component thermodynamical migration strategy(CTDPGEP) was proposed.In this algorithm,an elite subspace of each subpopulation,consisting of some excellent individuals and some random individuals,was selected to migrate to the migration-buffer of any other subpopulation.The other subpopulations received the individuals in its own migration-buffer asynchronously using component thermodynamical replacement method.This mechanism not only ensured the excellent individuals being propagated quickly among the subpopulations,but also maintained the diversity of each subpopulation.Thus,it harmonized the conflict between migration of individuals and diversity of subpopulation quantitatively,accelerated the convergence speed as well as preserved the diversity of population to decrease the probability of trapping into local optimum.Experimental results indicated that the proposed algorithm outperformes some newly relevant algorithms both in solution precision and convergence speed.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2012年第2期83-90,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61070008)
关键词 基因表达式程序设计 多种群 热力学迁移策略 并行算法 gene expression programming multipopulation thermodynamical migration strategy parallel algorithm
  • 相关文献

参考文献22

二级参考文献110

共引文献106

同被引文献34

  • 1吴晓军,薛惠锋,李慜,兰壮丽.GA-PSO混合规划算法[J].西北大学学报(自然科学版),2005,35(1):39-43. 被引量:21
  • 2彭京,唐常杰,元昌安,朱明放,乔少杰.基于重叠表达的多基因进化算法[J].计算机学报,2007,30(5):775-785. 被引量:14
  • 3MITCHELL M. An introduction to genetic algorithms[M]. Boston= MIT Press, 1996.
  • 4KOZA J R. Genetic programming:on the programming of computers by means of natural selection[M]. Cambridge~The MIT Press, 1992.
  • 5FERREIRA C. Gene expression programming: a new adaptive algorithm for solving problems[J]. Complex Systems, 2001,13(2) :87-129.
  • 6MARAGOS P. Fractal aspects of speech signals: dimension and interpolationEJ]. ICASSP, 1991 (1) : 417-420.
  • 7向勇,唐常杰,曾涛,刘胤田,乔少杰.基于基因表达式编程的多目标优化算法[J].四川大学学报(工程科学版),2007,39(4):124-129. 被引量:11
  • 8Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University,2005.
  • 9Dervis Karaboga, Bahriye Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization, 2007, 39(3): 459-471.
  • 10Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008,8(1):687-697.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部