摘要
为了正确自动识别数字通信调制样式,提出一种基于信号形态特征的调制样式分类算法。算法首先用离散小波去噪的方法处理含噪采样信号,然后将采样信号重组成为2维数据阵列,并计算阵列的多重分形维作为调制样式特征量,最后通过多重判别分辨分析将特征矢量投影到Fisher超平面,用最大似然方法识别调制样式。仿真结果表明,在信噪比从-3 dB到20 dB的动态范围内,可以获得很高的正确识别率。
In order to realize automatic modulation recognition,an algorithm based on geometric shape was put forward.At first,signal samples were processed with discrete wavelet denoise method.After that,signal samples were rearranged from 1-D to 2-D and multi-fractal dimension vectors were obtained.At last,feature vectors projected on the Fisher hyper plane were classified with maximum likelihood method.The simulation result showed that high rate of recognition is achieved at signal-noise rate from-3 dB to 20 dB.
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2012年第2期117-121,共5页
Journal of Sichuan University (Engineering Science Edition)
基金
国家杰出青年科学基金资助项目(60725105)
国家重点基础研究发展计划("973"计划)资助项目(2009CB320404)
国防技术重点实验室资助项目
关键词
小波
数字调制
分形维
目标识别
wavelet
digital modulation
fractal dimension
object recognition