摘要
根据数值微分理论,若给定未知目标函数在指定区间上的离散采样点数据,可使用数值差分公式求目标点处的一阶导数近似值。但对于靠近边界的目标点而言,多点中心差分公式可能因单边数据点不足而无法使用。另外,目标函数的一阶导数在目标点处可能发生加速变化,而前(后)向差分公式只考虑了单边数据点,可能无法适应该变化,使导数值误差较大。实际上,针对靠近右边界的目标点,可将后向差分公式在形式上"前移"一点来计算一阶导数,因此,一点超前数值差分公式被提出与研究。计算机数值实验表明:一点超前数值差分公式可使所求目标点一阶导数值具有较高的计算精度。
Based on the numerical differential theory, it is available to calculate the approximate first derivative of the target-node by using numerical differentiation formulas when the discrete sampling points of the unknown target function on specified interval are given. But for the target-nodes close to the bounda-it may be unable to use the center differentiation formulas involving multiple nodes because of the lack of sampling points on one side of the target-node. Besides, an accelerating change of the first derivative of the target-node may occur in some tion formulas simply takes the nodes makes the formulas difficuh to adapt first derivative of the target-node. Ac target functions. However, the use of forward/backward differentia- on one side of the target-node into consideration, which probably to such a change, and thus leads to less accuracy in estimating the tually, for the target-nodes close to the right boundary, it is availa-ble to move the backward differentiation formulas one node ahead to calculate the first derivatives. There- fore, one-node-ahead numerical differentiation formulas are proposed and investigated. Experimental re- sults verify and show that the first derivatives of the target-nodes with high computational precision can be obtained by using the one-node-ahead numerical differentiation formulas,
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期1-5,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(61075121)
教育部高等学校博士学科点专项科研基金博导类资助项目(20100171110045)
关键词
未知目标函数
一阶导数
一点超前
数值差分公式
计算精度
unknown target function
first derivatives
one node ahead
numerical differentiation formu-las
computational precision