期刊文献+

一点超前数值差分公式的提出、研究与实践 被引量:2

Proposing,Investigation and Practice on One-Node-Ahead Numerical Differentiation Formulas
下载PDF
导出
摘要 根据数值微分理论,若给定未知目标函数在指定区间上的离散采样点数据,可使用数值差分公式求目标点处的一阶导数近似值。但对于靠近边界的目标点而言,多点中心差分公式可能因单边数据点不足而无法使用。另外,目标函数的一阶导数在目标点处可能发生加速变化,而前(后)向差分公式只考虑了单边数据点,可能无法适应该变化,使导数值误差较大。实际上,针对靠近右边界的目标点,可将后向差分公式在形式上"前移"一点来计算一阶导数,因此,一点超前数值差分公式被提出与研究。计算机数值实验表明:一点超前数值差分公式可使所求目标点一阶导数值具有较高的计算精度。 Based on the numerical differential theory, it is available to calculate the approximate first derivative of the target-node by using numerical differentiation formulas when the discrete sampling points of the unknown target function on specified interval are given. But for the target-nodes close to the bounda-it may be unable to use the center differentiation formulas involving multiple nodes because of the lack of sampling points on one side of the target-node. Besides, an accelerating change of the first derivative of the target-node may occur in some tion formulas simply takes the nodes makes the formulas difficuh to adapt first derivative of the target-node. Ac target functions. However, the use of forward/backward differentia- on one side of the target-node into consideration, which probably to such a change, and thus leads to less accuracy in estimating the tually, for the target-nodes close to the right boundary, it is availa-ble to move the backward differentiation formulas one node ahead to calculate the first derivatives. There- fore, one-node-ahead numerical differentiation formulas are proposed and investigated. Experimental re- sults verify and show that the first derivatives of the target-nodes with high computational precision can be obtained by using the one-node-ahead numerical differentiation formulas,
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期1-5,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(61075121) 教育部高等学校博士学科点专项科研基金博导类资助项目(20100171110045)
关键词 未知目标函数 一阶导数 一点超前 数值差分公式 计算精度 unknown target function first derivatives one node ahead numerical differentiation formu-las computational precision
  • 相关文献

参考文献13

  • 1ZHANG Y N,JIANG D C,WANG J.A recurrent neuralnetwork for solving sylvester equation with time-varyingcoefficients[J].IEEE Transactions on Neural Networks,2002,13(5):1053-1063.
  • 2ZHANG Y N,GE S S.Design and analysis of a generalrecurrent neural network model for time-varying matrix in-version[J].IEEE Transactions on Neural Networks,2005,16(6):1477-1490.
  • 3ZHANG Y N,CHEN K.Comparison on Zhang neuralnetwork and gradient neural network for time-varying line-ar matrix equation AXB=C Solving[C] ∥Proceedingsof International Conference on Industrial TechnologyChengdu,China,2008.
  • 4MA W M,ZHANG Y N,WANG J.MATLAB simulinkmodeling and simulation of Zhang neural networks for on-line Time-varying Sylvester Equation Solving[C] ∥Pro-ceedings of International Joint Conference on Neural Net-works.Hong Kong,China,2008:286-290.
  • 5张雨浓,郭东生,徐思洪,李海林.未知目标函数之一阶数值微分公式验证与实践[J].甘肃科学学报,2009,21(1):13-18. 被引量:8
  • 6LI J P.General explicit difference formulas for numericaldifferentiation[J].Journal of Computational and AppliedMathematics,2005,183:29-52.
  • 7郭莹莹,余向阳.光学Bloch方程的数值解法[J].中山大学学报(自然科学版),2005,44(5):108-110. 被引量:12
  • 8孙建平,赵亚红.二阶差分系统正解的存在性[J].甘肃科学学报,2001,13(3):7-10. 被引量:1
  • 9KHAN I R,OHBA R,HOZUMI N.Mathematical proof ofclosed form expressions for finite difference approxima-tions based on taylor series[J].Journal of Computationaland Applied Mathematics,2003,150:303-309.
  • 10田瑞,李明,滑斌.有限差分法求解方同轴线的特性[J].甘肃科学学报,2007,19(1):111-113. 被引量:5

二级参考文献36

  • 1田瑞,李明,滑斌.有限差分法求解方同轴线的特性[J].甘肃科学学报,2007,19(1):111-113. 被引量:5
  • 2Zhang Y N,Jiang D C,Wang J. A recurrent Neural Network for Solving Sylvester Equation with Time-varying Coefficients[J]. IEEE Transactions on Neural Networks,2002,13(5):1 053-1 063.
  • 3Zhang Y N,Ge S S. Design and Analysis of a General Recurrent Neural Network Model for Time-varying Matrix Inversion[J]. IEEE Transactions on Neural Networks,2005,16(6):1 477-1 490.
  • 4Zhang Y N, Chen K. Comparison on Zhang Neural Network and Gradient Neural Network for Time-varying Linear Matrix Equation AXB= C Solving[A]. Proceedings of International Conference on Industrial Technology[C]. Chengdu,China, 2008.
  • 5Ma W M, Zhang Y N, Wang J. MATLAB Simulink Modeling and Simulation of Zhang Neural Networks for Online Time-varying Sylvester Equation Solving[A]. Proceedings of International Joint Conference on Neural Networks[C], Hong Kong, China,2008:286-290.
  • 6Mathews J H,Fink K D. Numerical Methods Using MATLAB[M]. Beijin:Electlonic Industry Press,2005.
  • 7Li J P. General Explicit Difference Formulas for Numerical Differentiation[J]. Journal of Computational and Applied Mathematics, 2005, 183:29-52.
  • 8Khan I R,Ohba R. Close-form Expressions for the Finite Difference Approximations of First and Higher Derivatives Based on Taylor Series[J]. Journal of Computational and Applied Mathematics, 1999,107 : 179-193.
  • 9Khan I R,Ohba R. New Finite Difference Formulas for Numerical Differentiation[J]. Journal of Computational and Applied Mathematics, 2000,126 : 269-276.
  • 10Khan I R,Ohba R, Hozumi N. Mathematical Proof of Closed Form Expressions for Finite Difference Approximations Based on Taylor Series[J]. Journal of Computational and Applied Mathematics, 2003,150 : 303-309.

共引文献22

同被引文献16

  • 1白晓东.Taylor公式逼近精度的研究[J].大学数学,2004,20(4):108-110. 被引量:2
  • 2王伯年,王宏光.误差函数计算方法的研究[J].上海理工大学学报,2004,26(6):529-532. 被引量:12
  • 3Mathews J H, Fink K D. Numerical Methods Using MATLAB[ M]. Upper Saddle River: Prentice Hall, 2004.
  • 4富兰克林GF.鲍威尔JD,那诶尼AE.自动控制原理与设计[M].李中华,张雨浓,译.第5版.北京:人民邮电出版社,2007.
  • 5Zhang Y N,Jin L,Guo D S. Three Nonlinearly-Activated Discrete-Time ZNN Models for Time-Varying Matrix Inversion[C]//2012 8th International Conference on Natural Computation,Chongqing,China,2012z163-167.
  • 6Zhang Y N,Yi C F,Guo D S,et al. Comparison on Zhang Neural Dynamics and Gradient-based Neural Dynamics for Online Solution of Nonlinear Time-varying Equation[J]. Neural Comput Applie, 2011,20 : 1-7.
  • 7John Bird,Cmath. Higher Engineering Mathematics[M]. Netherlands:Elsevier Ltd,2010.
  • 8李忠,周建莹.高等数学[M].北京:北京大学出版社,2009.
  • 9李炳钊.数学分析基础[M].上海:同济大学出版社,2002.
  • 10Li Jian-ping. General explicit difference formulas for numerical differentiation[J]. Journal of Computational and Applied Mathematics, 2005,183 (1) : 29 -52.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部