期刊文献+

具有HollingⅠ型功能反映的半比例依赖捕食-食饵离散系统的概周期解的存在性

Almost Periodic Solution for A Discrete Semi-ratio Dependent Predator-prey System With Holling-I Type Functional Response
下载PDF
导出
摘要 研究了一类具有Holling Ⅰ型功能反映的半比例依赖捕食-食饵离散系统,通过构造适当的Lyapunov函数,给出了其存在唯一一致渐近稳定的概周期解的充分条件. A discrete semi-ratio dependent predator-prey system with Holling-I type functional response is discussed.By constructing suitable Lyapunov function,some sufficient conditions are obtained for the existence and uniqueness of the almost periodic solution which is uniformly asymptomatically stable.
作者 胡猛 石燕青
出处 《宁夏大学学报(自然科学版)》 CAS 2012年第1期17-19,24,共4页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(61073065)
关键词 离散系统 HollingⅠ型 概周期解 概周期序列 discrete system Holling-I almost periodic solution almost periodic sequence
  • 相关文献

参考文献2

二级参考文献8

  • 1Chen F D.Permance and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems[J].Appl Math Comput,1991,59:804-814.
  • 2Fan M,Wang Q.Periodic solutions of a class of nonautononmous discrete time semi-ratio-dependent predator-prey systems[J].Discrete and continuous dynamical systems-series B August 2004,Volume 4:Number3.
  • 3Fang Y H,Li W T.Permanence for a delayed discrete ratio-dependentpredator-prey system with Holling type functional response[J].J Math Anal Appl,2004(299):357-374.
  • 4Fan M,Wang K.Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system[J].Math Comput Model,2002,35:951-961.
  • 5Wang Q,Fan M,Wang K.Dynamics of a class of nonautonomous semi-ratio-dependent predatorprey systems with functional responses[J].J Math Anal Appl,2003,278:443-471.
  • 6Arrowsmith D K,Place C M.Dynamical systems,Chapman and Hall.
  • 7Huo H F,Li W t.Permanence and global stability for nonautonomous discrete model of plankton allelopathy[J].Appl Math Lett,2004,17:1007-1013.
  • 8Chen Y M,Zhou Z.Stable periodic solution of a discrete periodic Lotka-Volterra competition system[J].J Math Anal Appl 2003,277:358-366.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部