期刊文献+

蚁群算法在技术创新扩散模型中的应用研究

Application of ant colony algorithm in technology innovation diffusion model
下载PDF
导出
摘要 技术创新使企业在市场竞争中赢得竞争优势,而技术创新在企业间的扩散极大地促进了经济的发展,因此对技术创新扩算规律的研究对经济发展有着重要意义.通过结合区域创新系统中技术创新扩散的演变过程,提出了一种更切合实际的多信息素、多衰减系数的改进型蚁群算法,首次将其用于仿真技术创新的扩散过程,尝试利用蚁群算法仿真区域创新系统中的技术创新扩散过程,以得到企业的动态技术变革路线图,分析企业的技术扩散规律及预测企业的技术变革趋势.并用具体的经济数据进行实验,很好地证明了蚁群算法在技术创新扩散模型研究中应用的可能性和可靠性. Technological innovation makes enterprises more competitive and technological innovation diffusion in enterprises has greatly promoted the economic development.Therefore,studies on the laws of technological innovation diffusion have great significance for economic development.This paper has proposed a more realistic modified ant colony algorithm with multi-pheromone and multi-evaporation rate by combining with the evolution of technological innovation diffusion.It tries to apply ant colony optimization to simulate the process of technological innovation diffusion,to analyze the diffusion law and to predict trends of enterprises' technological innovation.Then the system simulates the process of technological innovation diffusion with specific economic data.The simulation results show that ant colony algorithm has fine possibility and reliability in the application of innovation diffusion model.
出处 《河北工业大学学报》 CAS 北大核心 2012年第1期9-13,共5页 Journal of Hebei University of Technology
基金 国家自然科学基金(70773035) 河北省自然科学基金(G2011202172)
关键词 蚁群算法 多种信息素 多衰减系数 区域创新系统 技术创新扩散 ant colony algorithm multi-pheromone multi-evaporation rate regional innovation system technological innovation diffusion
  • 相关文献

参考文献7

  • 1Sun Chunxiao,Liu Guoyan.Technological innovation diffusion model and evaluation on innovation efficiency[C] //Proceedings of the 2009 International Conference on Information Management,Innovation Management and Industrial Engineering.Washington:2009.445-448.
  • 2Marco Dorigo,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.
  • 3翁瑾.基于模仿的技术扩散[J].科技进步与对策,2008,25(3):24-28. 被引量:5
  • 4Y Zhou.Runtime analysis of an ant colony optimization algorithm for TSP instances[J].IEEE Transactions on Evolutionary Computation,2009,13 (5):1083-1092.
  • 5Marco Dorigo,Maniezzo V,Colomi A.Ant system:optimization by a colony cooperating agents[J].IEEE Transaction on System,Man and Cybernetics-Part B,1996,26 (1):29-41.
  • 6Christine SOLNON.Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization[J].European Journal of Operational Research,2008,191 (3):1043-1055.
  • 7徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66

二级参考文献26

  • 1Dorigo M, Maniezzo V, Colorni A. The Ant System:Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997,1(1) :53-66.
  • 3Dorigo M, Gambardella L M, Middendorf M,Stutzle T. Guest editorial: special section onant colony optimization [J]. IEEE Transactions on Evolutionary Computation, 2002, 6.(4):317-319.
  • 4Stutzle T, Hoos H. MAX-MIN Ant System[J]. Future Generation Computer Systems,2000,16(8) : 889-914.
  • 5杜端甫.运筹图论[M].北京:航空航天大学出版社,1990..
  • 6约瑟夫·熊彼特.经济发展理论(中译本)[M].北京:商务印书馆.1990.
  • 7Soete,L. and R.Turner. Technology Diffusion and The Rate of Technological Change [J]. Economic Journal, 1984, 94:612- 623.
  • 8Jensen,R. Adoption and Diffusion of an Innovation of Uncertain Profitability [J]. Journal of Economic Theory, 1982, 27: 182-193.
  • 9McCardle,K. Information Acquisition and the Adoption of New Technology[JJ. Management Science, 1985 , 21:1372-1389.
  • 10Lekvall,P.and C,Wahlbin. A Study of some Assumptions Underlying Innovation Diffusion [J]. Swedish Journal of Economics, 1972:362-377.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部