期刊文献+

随机控制系统稳态Kalman滤波器新算法 被引量:3

NEW ALGORITHMS OF STEADY STATE KALMAN FILTER FOR STOCHASTIC CONTROL SYSTEMS
下载PDF
导出
摘要 应用现代时间序列分析方法,基于受控的自回归滑动平均(CARMA)新息模型,提出了随机控制系统稳态Kalman滤波器增益的两种新算法,避免了求解Riccati方程.为保证滤波器的渐近稳定性,给出了选择滤波初值的两个公式. Using the modern time series analysis method, based on the controlled autoregressive moving average(CARMA) innovation model, two new algorithms of steady state Kalman filter gain for stochastic control systems are presented, where the solution of the Riccati equation is avoided. In order to ensure the asymptotic stability of the filter, two formulae of setting initial filtering estimate are given. A simulation example shows the effectiveness of the new algorithms.
出处 《自动化学报》 EI CSCD 北大核心 2000年第1期74-78,共5页 Acta Automatica Sinica
基金 国家自然科学基金资助项目!( 6 9774 0 1 9)
关键词 随机控制系统 KALMAN滤波器 增益算法 Stochastic control systems, algorithms of steady state Kalman filter gain, asymptotic stability, modern time series analysis.
  • 相关文献

参考文献5

  • 1邓自立,刘玉梅.一类稳态Kalman滤波器及其渐近稳定性[J].信息与控制,1998,27(1):26-31. 被引量:6
  • 2邓自立 胡萍.非递推最优状态估计的几种统一算法.1998中国控制与决策学术年会论文集[M].大连:大连海事大学出版社,1998.250-254.
  • 3邓自立,现代时间序列分析及其应用,1989年,54页
  • 4邓自立,1998中国控制与决策学术年会论文集,1998年,250页
  • 5Deng Z L,Automatica,1996年,32卷,2期,199页

共引文献6

同被引文献39

  • 1刘静纨.最小二乘法在系统辨识中的应用[J].北京建筑工程学院学报,2004,20(3):19-22. 被引量:15
  • 2胡峰.自回归模型参数的递阶辨识[J].自动化学报,1994,20(4):464-469. 被引量:5
  • 3林学椿,于淑秋,唐国利.中国近百年温度序列[J].大气科学,1995,19(5):525-534. 被引量:274
  • 4CONWAY A J. Time series,neural networks and the future of the Sun [J]. New Astron Rev,1998,42(5):343-394.
  • 5FARMER J D,SIDOROWICH J J. Predicting chaotic time series [J]. Phys Rev Lett,1987,59:845-848.
  • 6TAKENS F. On the numerical determination of the dimension of an attractor [A]. Dynamical System and Turbulence, Lecture Notes in Mathematics, 898[M]. Berlin:Springer-Verlag,1981. 230-241.
  • 7AKRITAS P, ANTONIOU I, IVANOV V V.Identification and prediction of discrete chaotic maps applying a Chebyshev neural network [J]. Chaos,Solitons and Fractals, 2000,11(1-3):337-344.
  • 8JUDD K, MEES A. On selecting models for nonlinear time series [J]. Physica.. D, 1995,82(4):426-444.
  • 9CHO S. Pattern recognition with neural networks combined by genetic algorithm [J]. Fuzzy Sets and Syst, 1999,103(2) : 339-347.
  • 10HUNT K J, SBARBARO D, ZBIKOWSKI R, et al. Neural networks for control system--a survey[J]. Automatica,1992,28(6) : 1083-1112.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部