期刊文献+

基于语义分析的汉语介词短语识别方法研究 被引量:3

Research on Identification Method of Chinese Prepositional Phrase Based on Semantic Analysis
下载PDF
导出
摘要 针对介词短语右边界存在多种错误识别的问题,提出了一种基于最大熵的汉语介词短语自动识别方法。该方法结合了汉语介词短语左右边界词语的依存语法知识,先由最大熵模型对介词短语进行识别,然后利用依存树库中介词短语的左右边界词语的依存语法知识,对介词短语右边界的错误识别进行校正,提高了介词短语的识别率。 We propose a maximum entropy-based method for automatic identification of prepositional phrase, which focuses on multiple error identification problems on the right boundary of prepositional phrase. It combines the dependency grammar knowledge of prepositional phrase boundary. In the process of recognition, firstly, we apply maximum entropy to identify prepositional phrase, then fine-tune the results with dependency grammar knowledge generated by dependency treebank. It improves the recognition rate of prepositional phrase.
机构地区 商丘工学院
出处 《电脑与电信》 2012年第3期46-48,共3页 Computer & Telecommunication
关键词 汉语介词短语 短语识别 最大熵 依存语法 Chinese prepositional phrase phrase identification maximum entropy dependence grammar
  • 相关文献

参考文献7

  • 1刘群.统计机器翻译综述[J].中文信息学报,2003,17(4):1-12. 被引量:71
  • 2R.Rosenfeld.A Maximum Entropy Approach to Adaptive Statis-tical Language Learning[J].Computer Speech and language,1996,10(3):187-228.
  • 3Adam L.Berger,Stephen A,Della Pietra and Vincent J.Della Pietra.A maximum entropy approach to natural language processing Com-putational Linguistics,1996,22(1):38-73.
  • 4宋国杰,唐世渭,杨冬青,王腾蛟.基于最大熵原理的空间特征选择方法[J].软件学报,2003,14(9):1544-1550. 被引量:19
  • 5Pietra S D,Pietra V D,Lafferty J.Including features of random fields.IEEE Transactions on Pattern Analysis and Machine Intelligence.1997,19(4):380-393.
  • 6吕琳,刘玉树.最大熵和Brill方法结合识别英语BaseNPs[J].北京理工大学学报,2006,26(6):500-503. 被引量:6
  • 7李彦,吕琳,刘玉树等.最大熵方法在英文基本名词短语识别中的应用.第十一届中国人工智能学术年会,2005:1265-1270.

二级参考文献30

  • 1吕琳,周世斌,刘玉树.一种高性能英文词性标注器的设计与实现[J].北京理工大学学报,2005,25(10):876-879. 被引量:5
  • 2俞士汶等.机器翻译译文质量自动评估系统[A]..中国中文信息学会1991年会论文集[C].,.314—319.
  • 3BergerA.The improved iterative scaling algorithm: A gentle introduction.http://citeseer.nj.nec.com/31826.html,1997.
  • 4Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, Paul S. Roossin, A Statistical Approach to Machine Translation [J],Computational Linguistics, 1990.
  • 5Peter. F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, The Mathematics of Statistical Machine Translation: Parameter Estimation [J], Computational Linguiatics, 19,(2), 1993.
  • 6F. J. Och, C. Tillmann, and H. Ney. Improved alignment models for statistical machine translation[A]. In Proc. of the Joint SIGDAT Conf. On Empirical Methods in Natural Language Processing and Very Large Corpora, pages 20-28, University of Maryland, College Park, MD, June 1999.
  • 7Franz Josef Och, Hermann Ney. What Can Machine Translation Learn from Speech Recognition? [A]In: proceedings of MT 2001 Workshop: Towards a Road Map for MT, 26-31, Santiago de Compostels,Spain, September 2001.
  • 8Franz Josef Och, Hermann Ney, Discriminative Training and Maximum Entropy Models for Statistical Machine Translation [A], ACL2002.
  • 9K. A. Papineni, S. Roukos, and R. T. Ward. Feature-based language understanding[A]. In European Conf. on Speech Communication and Technology, 1435-1438, Rhodes, Greece, September,1997.
  • 10K. A. Papineni, S. Roukos, and R. T. Ward. Maximum likelihood and discriminative training of direct translation models [A] In Proc. Int. Conf. on Accoustics, Speech, and Signal Processing,pages,189-192, Seattle, WA, May, 1998.

共引文献93

同被引文献44

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部