期刊文献+

一类非线性机电混沌系统的自适应反步控制 被引量:3

Adaptive Backstepping Control of a Nonlinear Electromechanical Chaotic System
下载PDF
导出
摘要 针对一类非线性Vanderpol-Duffing耦合振子机电系统,讨论了系统的基本动力学行为,运用非线性系统理论和Routh-Hurwitz定理分别对系统平衡点的稳定性作了研究,得到了相关的定理。同时采用自适应反步法,对含有6个未知参数的机电系统设计了相应的控制器。最后通过数值示例进行仿真,对文中论证进行了强有力地论证。 This paper consider the dynamics and a problem of controlling chaos in a nonlinear electromechanical system which consists of the van der Pol oscillator coupled to the Duffing oscillator. The stability of the critical points is analyzed using the analytic Routh-Hurwitz criterion. And adaptive backstepping design is used to control the electromechanical system with six parameters unknown. Finally, give some numerical simulation studies of the system in order to verify the analytic results.
机构地区 西京学院基础部
出处 《科技通报》 北大核心 2012年第2期20-22,24,共4页 Bulletin of Science and Technology
基金 国家自然科学基金项目(10971164)
关键词 混沌 DUFFING系统 机电系统 自适应反步法 chaotic system duffing System electromechanical system adaptive backstepping method
  • 相关文献

参考文献2

二级参考文献20

  • 1王琳,倪樵,刘攀,黄玉盈.一种新的类Lorenz系统的混沌行为与形成机制[J].动力学与控制学报,2005,3(4):1-6. 被引量:11
  • 2Sparrow C. The Lorenz equation:blfurcation, chaos, and strange attractor[M]. New York:Springer, 1982.
  • 3Chert G, Dong X. From chaos to order:methodologies, perspectives and applications[ M]. Singapore:world Scientific, 1998.
  • 4LU J, Lu J, ChertS. Chaotic time series analysis and application[M]. Wuhan: Wuhan University Press, 2002.
  • 5Chen G, Ueta T. Yet mother chaotic attractor[J]. International Journal of Bifurcation and Chaos. 1999,9(7) : 1465 - 1466.
  • 6Ueta T, Chon G. Bifurcation analysis of Chon's attractor[J]. International Journal of Bifurcation and Chaos. 2000, 10(8) : 1917 - 1931.
  • 7Gh Tigan. Analysis of a Dynamical System Derived from the Lorenz System[J]. Scientific Bulletin of the politehnica University of Timisoara, tomul, Fascicola 1, 2005,50(64) :61 - 72.
  • 8Sparrow,C.The Lorenz Equation:bifurcation,chaos,and strange attractor[]..1982
  • 9Chert,G,Dong,X.From Chaos to Order:Methodologies,Perspectives and Applications[]..1998
  • 10L,J.Lu,J.Chen,S.Chaotic.Time Series Analysis and Application[]..2002

共引文献11

同被引文献24

  • 1韦笃取,罗晓曙,方锦清,汪秉宏.基于微分几何方法的永磁同步电动机的混沌运动的控制[J].物理学报,2006,55(1):54-59. 被引量:43
  • 2彭继慎,王强,刘栋良,宋绍楼.永磁同步电动机的速度自适应反推控制[J].煤炭学报,2006,31(4):540-544. 被引量:10
  • 3胡建辉,邹继斌.具有不确定参数永磁同步电动机的自适应反步控制[J].控制与决策,2006,21(11):1264-1269. 被引量:29
  • 4WEI Duqu, LUO Xiaoshu, WANG Binghong, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J]. Physics Letters A, 2007, 363(1 ): 71-77.
  • 5KE Shunsheng, L1N Jungshan. Sensorless speed tracking control with backstepping design scheme for permanent synchronous motors[C]// Proceedings of the 2005 IEEE Conference on Control Applications. Toronto, Canada: IEEE Press, 2005: 487-492.
  • 6Etedali N, Karimaghaee P. Adaptive control for a class of uncertain time delay chaotic systems with unknown control direction[C]//20th Iranian Conference on Electrical Engineering. Tehran, Iran, 2012: 1012-1017.
  • 7Vaidyanathan S, Rasappan S. Global chaos synchronization of Chen-Lee systems via backstepping control[C]// IEEE Conference on Advances in Engineering, Science and Mana:,ement. Tami Nadu. India. 2012: 73-77.
  • 8ZHOU Jianguo, WANG Youyi. Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor[J]. Control Engineering Practice, 2005, 13: 1259-1269.
  • 9Park J B, Joo Y H, Zhang B, et al. Bifurcation and chaos in permanent magnet synchronous motors[J]. IEEE Trans Circ Syst I, 2002, 49(3): 383-387.
  • 10谭文,王耀南,黄创霞,伍雪冬.永磁同步电机中混沌现象的滑模变结构控制[J].计算机工程与应用,2009,45(11):220-222. 被引量:10

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部