摘要
针对一类非线性Vanderpol-Duffing耦合振子机电系统,讨论了系统的基本动力学行为,运用非线性系统理论和Routh-Hurwitz定理分别对系统平衡点的稳定性作了研究,得到了相关的定理。同时采用自适应反步法,对含有6个未知参数的机电系统设计了相应的控制器。最后通过数值示例进行仿真,对文中论证进行了强有力地论证。
This paper consider the dynamics and a problem of controlling chaos in a nonlinear electromechanical system which consists of the van der Pol oscillator coupled to the Duffing oscillator. The stability of the critical points is analyzed using the analytic Routh-Hurwitz criterion. And adaptive backstepping design is used to control the electromechanical system with six parameters unknown. Finally, give some numerical simulation studies of the system in order to verify the analytic results.
出处
《科技通报》
北大核心
2012年第2期20-22,24,共4页
Bulletin of Science and Technology
基金
国家自然科学基金项目(10971164)
关键词
混沌
DUFFING系统
机电系统
自适应反步法
chaotic system
duffing System
electromechanical system
adaptive backstepping method