期刊文献+

自组织前向神经网络与非线性动态系统模化 被引量:2

Self Organizing Feedforward Neural Network and Modeling of Nonlinear Dynamical System
下载PDF
导出
摘要 将自组织学习过程引入到前向网络的训练中 ,提出了一种新的三层前向神经网络的训练方法 .训练过程首先利用自组织分簇算法确定隐含层结点的数目以及权值 ,然后通过求解线性最小二乘问题估计输出层权值 .自组织过程产生的激活权值对输入数据具有一种特征变换的功能 .利用该方法训练的网络可以称之为自组织前向网络 (SOFN) .文中通过实际非线性动态系统建模的例子 ,说明了SOFN网络具有良好性能 . In this paper a new learning procedure of MLP is presented which named as self organizing feedforward neural Network (SOFN). The optimization of weights is implemented layer by layer. At the stage of training hidden weights, an unsuperivsed self organizing clustering is introduced, then the weights of output layer are estimated by supervised least square algorithms. With self organizing stage, the number of hidden nodes can be determined automatically, furthermore, the hidden layer weights created by clustering work as a feature transformation matrix for input vectors. Two examples are given to show the feasibility and advantages of the approach, which is particularly suitable for modeling of nonlinear dynamical system.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第1期96-98,共3页 Control Theory & Applications
关键词 神经网络 训练算法 非线性系统 自组织学习 neural network training algorithm nonlinear system self organization
  • 相关文献

参考文献3

  • 1[1]Scalerto R S and Tependelenlioglu N. A fast new algorithm for training feedforward neural network[J]. IEEE Trans. on Signal Processing, 1992, 40(1): 202-210
  • 2[2]te Braake H A B and van Straten G. Random activation weight nerual network (RAWN) for fast non-iterative training[J]. Engineering Applications of Artificial Intelligence, 1995, 8(1): 71-80
  • 3[3]Thomopoulos C A and Bougoulias D K. Dignet: a self-organizing neural network for automatic pattern recognition and classification[A]. In: Proc. Int. Joint IEEE and International Neural Network Society Conf. on Neural Networks[C], Singapore, 1991, 2683-2692

同被引文献8

  • 1曾科,何小阳,刘红艳.基于B-P神经网络的非线性预测控制[J].控制工程,2006,13(4):348-350. 被引量:5
  • 2康立山,谢云,尤矢勇,罗祖华.非数值并行算法(第一册)-模拟退火算法[M].北京:科学出版社,1997.
  • 3te Braake H A B and van Straten G. Random activatio weight neural network (RAWN) for fast non-iterative training[J]. Engineering Applications of Arificial Intelligence, 1995, 8(1):71-80.
  • 4Harold SZU and Ralph HARTLEY. Fast simulated annealing[J].Physics Letter A, 1987, vol 122,No 3,4, 157- 162
  • 5王梓坤.概率论基础及其应用[M].北京:科学出版社,1997.
  • 6Braake H A B,Straten G.Random activation weight neural network for fast non-iterative training[J].Engineering Applications of Artificial Intelligence,1995,8(1):71-80.
  • 7Harold S U,Ralph H.Fast simulated annealing[J].Physics Letter A,1987,12(3,4):157-162
  • 8徐雷.一种改进的模拟退火组合优化法[J].信息与控制,1990,19(3):1-7. 被引量:19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部