期刊文献+

基于部分支持度树的关联规则增量式更新算法 被引量:2

Incremental updating algorithm of mining association rules based on partial support tree
原文传递
导出
摘要 关联规则挖掘是数据挖掘技术的一种简单又很实用的方法,有着广泛的应用。该文利用部分支持度树的结构提出了对关联规则的增量式更新算法,用于解决向数据库中添加新的数据而最小支持度不发生变化时的关联规则更新问题。该算法有效地利用已挖掘的关联规则和保留的部分支持度树来改善性能,并且只需对新增数据库部分进行一遍扫描,从而进一步提高算法的效率。实验结果表明,该算法能有效地解决关联规则的更新问题,提升挖掘效率。 Association rules mining is a simple and useful data mining method and has a wide range of application.A new algorithm based on partial support tree(PS_Tree) is proposed in this article for the purpose of dealing with the incremental updating problem when a new data is inserted in database and the minimum support is not changed.This algorithm uses effectively the association rules mined and the partial support tree constructed for a better performance.It needs scanning the updated part of the database only once,which can further improve efficiency.The performance study shows that the algorithm is an effective solution for incremental updating problems of association rules and can thus increase mining efficiency.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期1814-1818,共5页 Journal of Tsinghua University(Science and Technology)
关键词 数据挖掘 关联规则 增量式更新 部分支持度树 data mining association rules incremental updating partial support tree
  • 相关文献

参考文献13

  • 1Aaron C,John F.Association mining[J].ACM ComputingSurveys,2006,38(2):1-42.
  • 2Agrawal R,Strikant R.Fast algorithms for miningassociation rules[C]//Proc 20th International Conference onVery Large Data Bases;1994:487-499.
  • 3Bodon F.A fast APRIORI implementation[C]//Proceedings of the IEEE ICDM Workshop on FrequentItemset Mining Implementations;2003.
  • 4HAN Jiawei,PEI Jian,YIN Yiwen,et al.Mining frequentpatterns without candidate generation[C]//ProcSIGMOD'2000;2000:1-12.
  • 5XU Yue,LI Yuefeng,Gavin S.Reliable representations forassociation rules[J].Data&Knowledge Engineering,2011,70(6):555-575.
  • 6HONG Tzungpei,WANG Chingyao,TSENG Shianshyong.An incremental mining algorithm for maintaining sequentialpatterns using pre-large sequences[J].Experts Systems withApplications:An International Journal,2011,38(6):7051-7058.
  • 7Han J,Cheng H,Xin D,et al.Frequent pattern mining:Current status and future directions[J].Data Mining andKnowledge Discovery,2007,14(1):55-86.
  • 8Han J,Pei J,Yin Y,et al.Mining frequent patterns withoutcandidate generation:A frequent-pattern tree approach[J].Data Mining and Knowledge Discovery,2004,8(1):53-87.
  • 9Goulbourne G,Coenen F,Leng P.Algorithms for computingassociation rules using a partial-support tree[J].Knowledge-Based System,2000,13:141-149.
  • 10Cheung D,Han J,Ng V,et al.Maintence of discoveredassociation rules in large databases:An incremental updatingtechnique[C]//The 12th International Conference on DataEngineering.1996:163-169.

二级参考文献9

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 2[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 3[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 4[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 5[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 6[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 7[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 8[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407
  • 9[11]Agrawal R, Srikant R. Mining sequential pattern. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995. 3~14

共引文献279

同被引文献21

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部