期刊文献+

Analysis of Electroencephalogram Based on Wavelet Spectrum and Wavelet Entropy

Analysis of Electroencephalogram Based on Wavelet Spectrum and Wavelet Entropy
下载PDF
导出
摘要 Based on discrete wavelet transform, both relative wavelet energy (RWE) and segment wavelet entropy (SWE) of electroencephalogram (EEG) are defined in this paper. The RWE provides quantitatively the information about the relative energy associated with different frequency bands present in the EEG. The SWE carries information about the degree of order or disorder associated with different time segment of EEG evolution, which can determine the time-segment loealizations of abnormal dynamic processes of brain activity due to the localization characteristics of the wavelet transform. The experimental results show that the RWE and SWE are different between epileptic EEGs and normal EEGs, which demonstrate that the RWE and the SWE are helpful to analyze the dynamic behavior of different EEGs. Based on discrete wavelet transform, both relative wavelet energy (RWE) and segment wavelet entropy (SWE) of electroencephalogram (EEG) are defined in this paper. The RWE provides quantitatively the information about the relative energy associated with different frequency bands present in the EEG. The SWE carries information about the degree of order or disorder associated with different time segment of EEG evolution, which can determine the time-segment localizations of abnormal dynamic processes of brain activity due to the localization characteristics of the wavelet transform. The experimental results show that the RWE and SWE are different between epileptic EEGs and normal EEGs, which demonstrate that the RWE and the SWE are helpful to analyze the dynamic behavior of different EEGs.
作者 YOU Rong-yi
机构地区 Department of Physics
出处 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第3期119-124,共6页 中国生物医学工程学报(英文版)
基金 GNatural Science Foundatoin of Fujian Province of China grant number: 2010J01210 and T0750008
关键词 relative wavelet energy (RWE) wavelet spectrum segment waveletentropy (SWE) 脑电图 小波熵 离散小波变换 频谱 小波能量 活动异常 地化特征 动态行为
  • 相关文献

参考文献9

  • 1王兴元,骆超,邱天爽.HAI实验中EEG信号的非线性动力学研究[J].中国生物医学工程学报,2005,24(4):408-415. 被引量:8
  • 2Hasan A. Al-Nashash,Joseph S. Paul,Wendy C. Ziai,Daniel F. Hanley,Nitish V. Thakor.Wavelet Entropy for Subband Segmentation of EEG During Injury and Recovery[J]. Annals of Biomedical Engineering . 2003 (6)
  • 3Van,Atteveldt,N.,Formisano,E.,Goebel,R.,Blomert,L.Integration of letters and speech sounds in the human brain. Neuron . 2004
  • 4Palus M. Komárek V. Hrncir Z. et al.Is nonlinearity relevant for detecting changes in EEG?. Theory Biosci . 1999
  • 5O. Rosso,M. Martin,A. Plastino.Brain electrical activity analysis using wavelet-based informational tools. Physica A Statistical Mechanics and its Applications . 2002
  • 6Li Y,Xie Z.The wavelet detection of hidden periodicities in time series. Statist. and Prob. Lett . 1997
  • 7Mallat SG.A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
  • 8Grossman A,Morlet J.Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis . 1984
  • 9Shannon C E.The mathematical theory of communication. The Bell System Technical Journal . 1948

二级参考文献28

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2Faure P, Korn H. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation[J]. Life Sciences, 2001, 324: 773-793.
  • 3Korn H, Faure P. Is there chaos in the brain? Ⅱ. Experimental evidence and related models[J]. Comptes Rendus Biologies, 2003, 326: 787-840.
  • 4Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle[J]. Phys Lett, 1985, 3A: 152-156.
  • 5Pritchard WS, Duke DW. Measuring "chaos" in the brain: a tutorial review of EEG dimension estimation[J]. Brain and Cognition, 1995, 27: 353-397.
  • 6Babloyantz A, Destexhe A. Low-dimensional chaos in an instance of epilepsy[J]. Proc Natl Ncad Sci, 1986, 83: 3513-3517.
  • 7Preiβl H, Lutzenberger W, Pulvermüller F, et al. Fractal dimensions of short EEG time series in humans[J]. Neuroscience Letters, 1997, 225: 77-80.
  • 8Lindenberg AM. The evolution of complexity in human brain development: an EEG study. Electroencephalography and Clinical Neurophysiology[J], 1996, 99: 405-411.
  • 9Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview[J]. International Journal of Psychophysiology, 1999, 34: 45-52.
  • 10Elger CE, Widman G, Andrzejak R, et al. Nonlinear EEG analysis and its potential role in epileptology[J]. Epilepsia, 2000, 41(3): 34-38.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部