期刊文献+

根平方平均的最优凸组合不等式

The Optimal Convex Combination Inequality for Root-square Mean
下载PDF
导出
摘要 本文得到最大值α和最小值β,使得对所有的a,b>0,a≠b双向不等式αC(a,b)+(1-α)A(a,b)<B(a,b)<βC(a,b)+(1-β)A(a,b)成立。这里A(a,b),B(a,b)和C(a,b)分别表示两个正数a和b的算术平均,反调和平均和根平方平均。 We find the greatest value α and the least value β such that the double inequality αC(a,b)+(1-α)A(α,b)〈B(a,b)〈βC(a,b)+(1-β)A(a,b)holds for all a, b 〉0 with a≠ b. Here A (a, b ), B ( a, b ) and C ( a, b ) denote the arithmetic, contraharmonic and root-square means of two positive numbers a and b ,respectively.
作者 王勇
出处 《科技通报》 北大核心 2012年第3期9-11,共3页 Bulletin of Science and Technology
关键词 算术平均 反调和平均 根平方平均 最优凸组合不等式 arithmetic mean contraharmonic mean root-square mean optimal convex combination inequality
  • 相关文献

参考文献10

  • 1E F Beckenbach,R Bellman.Inequalities[M].Springer-Verlag,New York,1971.
  • 2H J Seiffert,Problem 887[J].Nieuw Archief voor Wiskunde,1993,11(2):176.
  • 3P A Hasto.Optimal inequalities between Seiffert's mean and power mean[J].Mathematical Inequalities and Applications,2004,7(1):47-53.
  • 4E Neuman,J Sandor.On certain means of two arguments and their extensions[J].Int J Math Math Sci,2003,16:981-983.
  • 5E Neuman,J Sandor.On the Schwab-Borchardt mean[J].Math.Pannon.,2003,14(2):253-266.
  • 6P A Hasto.A monotonicity property of ratios of symmetric homogeneous means[J].Journal of Inequalities in Pure and AppliedMathematics,2002,3(5):1-54.
  • 7Y M Chu,Y F Qiu,M K Wang,G D Wang,The optimal convex combination bounds of arithmetic and harmonic means for theSeiffert's mean[J].Journal of Inequalities and Applications,2010,10:1-7.
  • 8M K Wang,Y M Chu and Y F Qiu,Some comparison inequalities for generalized Muirhead and identric means[J] ,Journal ofInequalities and Applications,2010,10:1-10.
  • 9M Y Shi,Y M Chu and Y P Jiang,Optimal inequalities among various means of two arguments[J].Abstract and AppliedAnalysis.2009,9:1-8.
  • 10Y M Chu and W F Xia,Inequalities for generalized logarithmic means[J] ,Journal of Inequalities and Applications.2009,10(1):1-7.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部