期刊文献+

基于群体智能算法的换热网络同步最优综合 被引量:25

A hybrid swarm intelligence algorithm for simultaneous synthesis of heat exchanger network
下载PDF
导出
摘要 换热网络同步综合方法一般需要建立复杂的混合整数非线性数学规划模型,该模型具有非凸、非线、不连续的特点,属于最难求解的一类NP-hard问题,应用传统的优化算法很难确定其全局最优解,尤其是对大规模换热网络综合问题,甚至无法在合理时间内接近全局最优的局部最优解。针对换热网络同步综合问题,提出基于群体智能算法的分层优化策略,外层采用离散粒子群算法与遗传算法相结合的混合群体智能算法优化换热网络结构,内层在结构变量给定条件下利用改进粒子群算法优化冷热物流分流比与换热负荷。两个典型算例研究证明了该方法能以较高的效率和稳定性得到较好的优化结果。 Heat exchanger network is an important energy recovery system in chemical processes. Recently, simultaneous synthesis methods have been frequently applied to designing a costoptimal heat exchanger network. Simultaneous synthesis problem is usually formulated as a mixed-integer non-linear programming model, which is nonconvex, nonlinearity, non-continuous, and belongs to one of the toughest nondeterministic polynomial-time hard (NP-hard) problems. Medium or largescale simultaneous synthesis problems in many cases cannot be solved in a reasonable time. A two-level approach was proposed for solving HENS problem. A hybrid methodology consisting of binary particle swarm optimization and genetic algorithm was utilized to generate the network structure in the upper level, while in the lower level, the heat load of exchangers and splitstream fractions were optimized by an improved particle swarm optimization. Two benchmark problems were solved to prove the efficiency of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第4期1116-1123,共8页 CIESC Journal
关键词 换热网络 同步综合 混合整数非线性规划 粒子群算法 遗传算法 heat exchanger network simultaneous synthesis mixed-integer non-linear programming particle swarm optimization genetic algorithm
  • 相关文献

参考文献22

  • 1Hwa C S.Mathematical formulation and optimization of heatexchanger networks using separable programming//AIChE-IChemE Symposium Series 4[C].New York:AIChE,1965:101-106.
  • 2Furman K C,Sahinidis N V.A critical review and annotatedbibliography for heat exchanger network synthesis in the20th century[J].Ind.Eng.Chem.Res.,2002,41(10):2335-2370.
  • 3Yuan X,Pibouleau L,et al.Experiments in process synthesisvia mixed-integer programming[J].Chem.Eng.Process,1989,25(2):99-116.
  • 4Ciric A R,Floudas C A.Application of the simultaneousmatch network optimization approach to the pseudo-pinchproblem[J].Comput.Chem.Eng.,1990,14(3):241-250.
  • 5Ciric A R,Floudas C A.Heat-exchanger network synthesiswithout decomposition[J].Comput.Chem.Eng.,1991,15(6):385-396.
  • 6Papoulias S A,Grossmann I E.A structural optimizationapproach in process synthesis(Ⅱ):Heat-recoverynetworks[J].Comput.Chem.Eng.,1983,7(6):707-721.
  • 7Yee T F,Grossmann I E.Simultaneous-optimization modelsfor heat integration(Ⅱ):Heat-exchanger networkSynthesis[J].Comput.Chem.Eng.,1990,14(10):1165-1184.
  • 8Bjrk K M,Westerlund T.Global optimization of heatexchanger network synthesis problems with and without theisothermal mixing assumption[J].Comput.Chem.Eng.,2002,26(11):1581-1593.
  • 9Lewin D R.A generalized method for HEN synthesis usingstochastic optimization(Ⅱ):The synthesis of cost-optimalnetworks[J].Comput.Chem.Eng.,1998,22(10):1387-1405.
  • 10Ravagnani M A S S,Silva A P,et al.Heat exchangernetwork synthesis and optimisation using genetic algorithm[J].Appl.Therm.Eng.,2005,25(7):1003-1017.

二级参考文献8

  • 1Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5) : 745- 763.
  • 2Yee T F, Grossmann I E. Simultaneous optimization models for heat integration- Ⅱ. Heat exchanger network synthesis [ J ]. Computers and Chemical Engineering, 1990, 14(10): 1165- 1184.
  • 3Ravagnani M A S S, Silva A P, Arroyo P A, et al. Heat exchanger network synthesis and optimization using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(9) : 1003 - 1017.
  • 4Athier G, Floquet P, Pibouleau L, et al. Process optimization by simulated annealing and NLP. Application to Heat Exchanger Network Synthesis[J]. Computers and Chemical Engineering, 1997, 21(Supplement 1) : 475 - 480.
  • 5Lewin D R. A generalized method for HEN synthesis using stochastic optimization-Ⅱ: The synthesis of cost optimal networks[J]. Computers and Chemical Engineering, 1998, 22(10): 1387-1405.
  • 6Kennedy J, Eherhart R. Particle swarm optimization[ C] //Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, 1995. Perth: IEEE, 1995.
  • 7Yu H M, Fang H P, Yao P J, et al. A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration[J ]. Computers and Chemical Engineering, 2000, 24(8) : 2023 - 2035.
  • 8Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis (Ⅱ): Heat recovery network[J]. Computers and Chemical Engineering, 1983, 7 (6) : 707 - 721.

共引文献13

同被引文献164

引证文献25

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部