摘要
为了解决用人工神经网络映射发电机暂态过程中,各个变量的变化曲线存在的网络结构以及权值和阈值的初始值难以科学地确定的问题,将遗传算法和传统的误差反传算法结合起来,对人工神经网络进行设计和训练。该方法在发电厂培训系统中的应用表明:这种方法提高了人工神经网络中权值和阈值的初始值的确定以及网络拓扑结构的设计的科学性,从而使人工神经网络容易出现的发散以及陷入局部极小点的问题得以避兔。
The genetic algorithm was utilized in design of topology of artificial neural networks and determi nation of the initial values of the weights and thresholds. The application of the artificial neural network designed by the above method in fitting of the generator variables curves in transient process has illustrated that it can make the design of topology of artificial neural networks and determination of the weights and thresholds more scientific. The divergence and local infinitesimal problems can be avoided.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2000年第1期15-18,共4页
Journal of North China Electric Power University:Natural Science Edition
关键词
人工神经网络
遗传算法
发电厂
培训系统
artificial neural network, BP algorithm
genetic algorithm
generator