期刊文献+

非均匀颗粒自然堆积过程的计算机仿真 被引量:3

Computer Simulation of Natural Accumulation Process of the Non-equigranular Particles
下载PDF
导出
摘要 通过对非均匀颗粒的自然堆积过程进行计算机仿真,获得了散体的分形特性,为散体的物性研究提供了较详细的几何结构信息。拟议了自然堆积过程的计算机仿真实现方法,确定了随机堆积形成的散作的分形维数,仿真结果与己有数据相比较,表明了该方法的可行性。 By computer simulation technique the natural accumulating process of the non-equigranular particles is studied in this paper. The fractal characteristics of bulk material are obtained. So the detailed information for the geometrical structure can be used for further study on the physical properties of bulk material. A computer simulation method of the natural accumulating process is proposed, the fractal dimension of bulk material accu mulated is determined. Comparing the results with the data obtained by means of experimental measurements indicates that the proposed computer simulation method is feasible.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2000年第1期33-36,共4页 Journal of North China Electric Power University:Natural Science Edition
关键词 非均匀颗粒 散体 分形 计算机仿真 non-equigranular particles, bulk material, fractal computer simulation
  • 相关文献

参考文献7

  • 1GoodarzNia I, Floc Simulation. Effects of Particle Size and Shape [J]. Chem. Eng. Sci., 1975.30-407
  • 2GoodarzNia I, Floc Simulation. Effects of Particle Distribution [J]. J. Colloid Interface Sci., 1975.29-52
  • 3Voss R F. Multiparticle Fractal Aggregation [J]. J. Stat. Phys., 1984.36-861
  • 4谢和平.分形一岩石力学导论[M].北京:科学出版社,1997.112-122.
  • 5KayeBH 徐新阳 康雁 译.分形漫步[M].沈阳:东北大学出版社,1995..
  • 6Jean-Francois Gouyet. Physics and Fractal Structures [M]. New York: Springer-Verlag and Paris: Masson, 1996.155-161
  • 7Barabasi A L. Fractal Concepts in Surface Growth [M]. Cambridge: Cambridge University Press. 1995.85-87

共引文献8

同被引文献24

  • 1刘军,刘汉龙.用Monte Carlo方法模拟砂土的自然堆积过程[J].岩土力学,2005,26(S1):113-116. 被引量:7
  • 2[1]Wu,X.; Downes,M.S.,Goktekin,T.,Tendick,F.Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes[J].Computer Graphics Forum (S0167-7055),2001,20(3):349-358.
  • 3[2]Ma,Q.W.,Wu,G.X.,Taylor,R.E.Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves.Part 1:Methodology and numerical procedure[J].International Journal for Numerical Methods in Fluids (S0271-2091),2001,36(3):265-285.
  • 4[3]John C Hart,et al.Scientific and artistic investigation of multi-dimensional fractals on the A t & T pixed machine[J].The Visual Computer (S0178-2789),1993,9:346-355.
  • 5[4]Michsael Gervautz,Christoph Traxler.Representation and real artistic rendering of natural phenomena with cyclic CSG graph s[J].The Visual Computer (S0178-2789),1996,12:62-74.
  • 6[5]Mistakidis,Euripides S.,panagouli,Olympia K.Strength evaluation of retrofit shear wall elements with interfaces of fractal geometry[J].Engineering Structures (S0141-0296),2002,24(5):649-659.
  • 7[6]Raabe,D..On the stress fields of crystal dislocations with fractal geometry.Materials Science & Engineering A:Structural Materials:Properties,Microstructure and Processing[M].Germany Print publication,1995.
  • 8[7]Kuwahara,Noriaki; Shiwa,Shinichi; Kishino,Fumio.Three-dimensional tree shape reconstruction from multiviewpoint images based on fractal geometry[C]//Proeeedings of SPIE-The International Society for Optical Engineering,1995,4:1267-1278.
  • 9[8]Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia[M].2004.
  • 10[9]Majewski,Mirek.Tutorial on the realistic visualization of 3D Sierpinski fractals[J].Computers & Graphics (S0097-8493),1998,22(1):129-142.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部