摘要
针对油田开发指标预测问题,提出一种模糊神经网络模型,该模型包括输入层、模糊化层、规则层和输出层。模糊化层采用高斯隶属函数,规则层每个节点对应一条模糊逻辑规则。网络可调参数为模糊集参数和输出层权值。提出了基于改进量子粒子群优化的网络训练方法。以油田开发指标中含水率预测为例,结果表明该方法是有效的可行的。
Aiming at the forecast of oilfield development indexes, a fuzzy neural networks model is proposed that includes input layer, fuzzification layer, rules layer, and output layer. The Gauss function is applied in fuzzification layer, and each node in rules layer corresponds to a fuzzy logic rule. The adjustable parameters of proposed model include the fuzzy set parameters and the weight value of output layer. For determining these parameters, an improved quantum particle swarm optimization is presented. With forecast of moisture content as an example, the experimental results show that this method is effective and feasible,
出处
《计算机系统应用》
2012年第4期165-168,共4页
Computer Systems & Applications
基金
国家自然科学基金(61170132)
黑龙江省教育厅科学基金(11551015)
中国博士后基金(20090460864)
关键词
模糊神经网络
粒子群优化
指标预测
算法设计
优化算法
fuzzy neural networks
particles swarm optimization
indexes forecast
algorithm design
optimizationalgorithm