期刊文献+

基于社区的关键节点挖掘算法 被引量:3

Key-Nodes Mining Algorithm Based on Communities
下载PDF
导出
摘要 在对大型网络进行关键节点挖掘方面,传统方法效率低下。针对这一缺陷,提出了一种基于社区的关键节点挖掘算法,首先对社区发现算法进行改进,然后提出基于节点频度中心度的挖掘算法。实验结果表明,新算法对社区进行关键节点挖掘时,不仅挖掘的影响度得到保证,而且效率显著提高。 When mining the key-nodes from large-scale networks, the traditional methods are poor efficiency. To address this defect, a new algorithm, which based on communities, is presented for mining the key-nodes. First, it improved the community detection algorithms, and then put forward an algorithm based on degree centrality of the node for mining the key-nodes. The experimental results show that when applying the new algorithm to mine the key-nodes from communities, not only the influence degree of mining is guaranteed, but also the efficiency is improved significantly.
作者 陆晓野 陈玮
出处 《计算机系统应用》 2012年第4期250-253,197,共5页 Computer Systems & Applications
关键词 关键节点 社区发现 社会网络 频度中心度 影响度 key-nodes community detection social networks degree centrality influence degree
  • 相关文献

参考文献11

  • 1Kempel D,Kleinberg J,Tardos E.Maximizing the spread ofinfluence through a social network.ACM SIGKDD,2003,137-146.
  • 2Girvan M,Newman MEJ.Community structure in social andbiological networks.Proc.Natl.Acad.Sci.USA,2002,99(12):8271-8275.
  • 3Newman MEJ,Girvan M.Finding and evaluating communitystructure in networks.Phys.Rev.E,2004.
  • 4Gruhl D,Guha R,Tomkins A.Information diffusion throughblogspace.ACM SIGKDD,2004,6(2):43-52.
  • 5Lappas T,Terzi E,Gunopulos D,et al.Finding Effectors inSocial Networks.ACM SIGKDD,2010.
  • 6Chen W,Wang YJ,Yang SY.Efficient influence maximizationin social networks.ACM SIGKDD,2009:199-208.
  • 7Clauset AM,Newman EJ.Finding community structure invery large networks.Phys.Rev.E,2004,70(6).
  • 8吴文涛,肖仰华,何震瀛,等.基于权重信息挖掘社会网络中的隐含社团[J].计算机研究与发展,2009,46(增刊):540-546.
  • 9吴龙庭,戴汝为,崔霞.一种局部最优社区挖掘方法[J].计算机应用研究,2009,26(8):2855-2857. 被引量:4
  • 10www-personal.umich.edu/~mejn/netdata/.

二级参考文献6

共引文献5

同被引文献60

  • 1王金龙,徐从富,骆国靖.面向异质关系的社区挖掘[J].计算机应用,2007,27(12):3016-3018. 被引量:4
  • 2Ferrara E,Fiumara G. Topological features of online social networks[J].Communications in Applied and Industrial Mathematics,2011,(02):1-20.
  • 3ComarPM,TanPN,JainA K. A framework for joint community detection across multiple related networks[J].Neurocomputing,2012,(01):93-104.
  • 4Tang Jiliang,Wang Xufei,Liu Huan. Integrating social media data for community detection[A].Berlin:Springer-Verlag,2011.1-20.
  • 5Girvan M,Newman M E J. Community structure in social and biological networks[J].Proceedings of the National Academy of the Sciences of the United States of America (PNAS),2002,(12):7821-7826.
  • 6Newman M E J,Girvan M. Finding and evaluating community structure in networks[J].Physical Review E,2004,(02):026113-1-026113-13.
  • 7Guimera R,Amaral L A N. Modeling the world-wide airport network[J].The European Physical Journal B,2004,(02):381-385.
  • 8Fortunato S,Barthdlemy M. Resolution limit in community detection[J].Proceedings of the National Academy of the Sciences of the United States of America (PNAS),2007,(01):36-41.
  • 9Nowicki K,Snijders T A B. Estimation and prediction for stochastic blockstructures[J].Journal of the American Statistical Association,2001,(455):1077-1987.
  • 10Airoldi E M,Blei D M,Fienberg S E. Mixed membership stochastic block models[J].The Journal of Machine Learning Research,2008,(06):1981-2014.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部