摘要
高光谱具有波段窄、波段多的特点,能够提供比多光谱遥感更精细的地物光谱信息,为识别光谱性质相似的森林树种提供了有效途径。为了识别光谱性质相似的杉木和马尾松,利用逐步判别分析法对杉木和马尾松的原始光谱、一阶微分光谱、对数变换后取一阶微分光谱及植被指数进行分析,结果表明:对数变换后取一阶微分的光谱及植被指数对杉木和马尾松的识别精度最高,分别为96.67%、89.17%;两树种识别的特征波段为490~499nm,500~519nm,560~579nm,610~619nm,630~649nm,680~700nm,710~719nm,770~779nm;组成植被指数NPCI、mND705、SRPI、GNDVI、GM的波段为:430、445、550、680、700、705、750nm。
Hyperspectrum provides an efficient method for the discrimination of forest trees with similar spectrum, because hyperspectrum has the characteristic of narrow band and multiband, and can provide more micromesh spectral information than multispectrum. To discriminate Cunningharnia lanceolata and Pinus massoniana, the original spectrum, first derivative of spectra, first derivative of log(R), vegetation indices of the two trees were analyzed by the method of stepwise discriminate analysis. The results show that: first derivative of log(R) and vegetation indices were efficient for the discrimination of these two trees, and the accuracies reached 96.67% and 89. 17%0, re spectively. The characteristic bands for discriminating the two trees were 490-499 nm, 500-519 nm, 560-579 nm, 610-619 nm, 630-649 nm, 680-700 nm, 710-719 nm, 770-779 nm. The bands of 430, 445, 550, 680, 700, 705, 750 nm composed the vegetation indices for the discrimination of the two conifer species.
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2011年第11期30-33,共4页
Journal of Central South University of Forestry & Technology
基金
国家自然科学基金项目(30871962)
高等学校博士学科点专项科研基金项目(200805380001)
国家林业局林业公益项目专题(201104028)
中南林业科技大学林业遥感信息工程研究中心开放性研究基金项目(RS2008K01)
关键词
高光谱
逐步判别分析
植被指数
针叶树种
hyperspectraum
stepwise discriminant analysis
vegetation indices
conifer species