摘要
The TiO 2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO 2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment. Both the photocurrent response and the charge recombination kinetics in TiO 2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO 2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects. The semiconductor sensitization made the slow photoresponse disappeared and the steadystate photocurrent value increased drastically, which suggested that the sensitization of TiO 2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.
The TiO 2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO 2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment. Both the photocurrent response and the charge recombination kinetics in TiO 2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO 2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects. The semiconductor sensitization made the slow photoresponse disappeared and the steadystate photocurrent value increased drastically, which suggested that the sensitization of TiO 2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2000年第2期295-297,共3页
Chemical Journal of Chinese Universities
基金
国家自然科学基金!(批准号 :29773017)资助
关键词
电极敏化
光生电荷转移
氧化钛薄膜电极
硫化镉
CdS
Sensitization
TiO_2 nanoparticulate thin films
Photoinduced carrier transport