期刊文献+

一般化凸空间上的一个连续选择定理(英文)

A CONTINUOUS SELECTION THEOREM ON GENERALIZED CONVEX SPACE
下载PDF
导出
摘要 本文研究一般化凸空间上的连续选择定理.利用在D■X的条件下,一般化凸空间(X,D;Γ)上Γ-凸子集的概念,得到了两类一般化凸空间之间,以及φ映射和Γ-凸映射之间的关系,并且得到了一个连续选择定理.本文推广了一般化凸空间上凸子集的概念. In this artilce,we discuss a continuous selection theorem on generalized convex space.Using the definition of Γ-convex set in a generalized convex space(X,D;Γ),where D is not necessarily a subset of X,we get the relationship between generalized convex spaces with DX and generalized convex spaces with D X,as well as the relationship between Φ-map and a multimap with nonempty Γ-convex values.Moreover,we also get a continuous selection theorem.We extend the conception of Γ-convex set in the generalized convex space.
作者 肖刚
出处 《数学杂志》 CSCD 北大核心 2012年第2期249-252,共4页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(60574075)
关键词 一般化凸空间 Γ-凸子集 Φ映射 连续选择定理 generalized convex space Γ-convex subset Φ map continuous selection theorem
  • 相关文献

参考文献2

二级参考文献11

  • 1Tan Kok-Keong, Yu Jian, Yuan Xianzhi. Some New Minimax Inequalities and Applications to Existence of Equalibria in H-spaces. Nonlinear Analysis, TMA, 1995, 24(10): 1457-1470.
  • 2Wu Xian, Shen Shikai. A Futher Generalization of Yannelis-prabhakar's Continuous Selection Theorem and Its Applications. J. Math. Anal. Appl., 1996, 197:61-74.
  • 3Wu Xian. Existence Theorems of Solutions for Generalized Quasi-variational Inequalities, a Minimax Theorem, and a Section Theorem in the Spaces without Lineax Structure. J. Math. Anal. Appl.,1998, 220:495-507.
  • 4Aronszajn N.,Panitchpakdi P..Extensions of uniformly continuous transformations and hyperconvex metric space[J].Pacific J.Math.,1956,6:405-439.
  • 5Sine R..Hyperconvexity and nonexpansive multifunctions[J].Proc.Amer.Math.Soc.,1989,315(2):755-767.
  • 6Khamsi M.A.,Kirk W.A.,and Carlos Martinez Yanez.Fixed Point and Selection Theorems in Hyperconvex Spaces[J].Proc.Amer.Math.Soc.,2000,128 (11):3275-3283.
  • 7Sine R..Hyperconvexity and approximate fixed points[J].Nonlinear Analysis,1989,13(7):863-869.
  • 8Baillon J.B..Nonexpansive mappings and hyperconvex spaces[J].Contemp.Math.,1988,72:11-19.
  • 9Khamsi M.A..Lin M.and Sine R.C..Nonexpansive mappings and semigroups in hyperconvex spaces[J].J.Math.Anal.Appl.,1992,168:372-380.
  • 10Soardi P..Existence of fixed points of nonexpansive mapping in certain Banach lattices[J].Proc.Amer.Math.Soc.,1979,73:25-29.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部