期刊文献+

基于遗传算法的人体穴位阻抗特征优化 被引量:2

Feature optimization method in impedance signal of human meridian based on genetic algorithm
原文传递
导出
摘要 为消除人体穴位的阻抗信号特征集中存在的冗余和不相关分量的问题,提出了一种基于遗传算法的人体穴位阻抗特征子集选择与优化算法.通过分析穴位阻抗信号的自回归(AR)模型谱图建立了穴位原始特征样本集,利用类内-类间距离判据构造遗传算法的适应度函数并改进遗传算法的特征优化算子.经人体穴位的电阻抗特征选择与优化实例分析表明:该方法具有较好的寻优性能和适应度稳定,在不增加原始信息的情况下,能够有效地减少分类识别的特征数和提高信号识别的准确率,且将穴位阻抗特征的平均状态辨识率提高9%左右. In order to solve the redundant and irrelevant components problem in the human meridian impedance feature set,a selection and optimization method of the human meridian feature subset based on genetic algorithm was proposed.Original meridian sample feature set was established through analyzing autoregressive(AR) power spectrum of human meridian impedance signal.By using Euclidean distance among all instances of different class,the fitness function of genetic algorithm(GA) was constructed and feature-optimization operators of GA was improved.Case study on the feature selection and optimization of human acupuncture points shows that the method has good optimization performance and stability in the fitness function,and the average status recognition rate of human meridian impedance characteristic increases nearly 9% without increasing the original signal information.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期31-34,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60971004)
关键词 模式识别 遗传算法 特征优化 自回归模型 穴位阻抗信号 meridian impedance signal genetic algorithm feature optimization autoregressive model pattern recognition
  • 相关文献

参考文献10

  • 1Estrelada D S,Marques D S,Jossinet J.Classifica-tion of breast tissue by electrical impedance spectros-copy[J].Medical and Biological Engineering andComputing,2000,38(1):26-30.
  • 2Kong E,Ren S.The preliminary study on the methodof meridian recognition[C]∥The International Socie-ty for Optical Engineering.Wuhan:SPIE,2001,4414:121-122.
  • 3Hung C P,Su H J,Yang S L.Melancholia diagnosisbased on GDS evaluation and meridian energy meas-urement using CMAC neural network approach[J].Wseas Transactions on Information Science and Ap-plications,2009,6(3):500-509.
  • 4Dhir C S,Lee S Y.Information theoretic feature ex-traction and selection for robust classification[C]∥The International Society for Optical Engineering.Orlando:SPIE,2009,7343:1-12.
  • 5马岚,杨玉星.生物电阻抗特征参数提取方法及测量系统的研究[J].航天医学与医学工程,2002,15(3):199-202. 被引量:27
  • 6Vafaie H,de Jong K.Robust feature selection algo-rithms[C]∥Proceedings of the 5th International Con-ference on Tools with Artificial Intelligence.Califor-nia:IEEE,1993:356-363.
  • 7王飞,罗志增.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版),2004,32(S1):100-102. 被引量:5
  • 8Vidyasagar M,Karandikar R L.System identifica-tion:a learning theory approach[J].Proceedings ofthe IEEE Conference on Decision and Control,2001,2:2001-2006.
  • 9边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 10van der Ouderaa E,Schoukens J,Renneboog J.Peak factor minimization of input and output signalsof linear systems[J].IEEE Transactions on In-strumentation and Measurement,1988,37(2):207-212.

二级参考文献6

共引文献96

同被引文献48

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部