期刊文献+

基于动网格方法的拍动平板升力分析

Lift performance analysis of flapping flat plate using dynamic mesh method
原文传递
导出
摘要 针对微型飞行器,采用动网格方法计算了旋转超前、同步、滞后3种拍动模式下的平板升力性能.通过比较分析二维、三维拍动平板的升力性能以及尾涡分布变化,探讨了拍动平板升力性能与其运动规律的关系.计算表明:旋转同步和超前模式下的平板升力系数明显高于旋转滞后模式下的平板升力系数;二维、三维平板升力系数均随角振幅的增大而减小,随相位差的增大而增大,拍动振幅的影响相对较小;角振幅较大时,旋转超前模式中三维平板升力系数均明显高于二维平板升力系数,旋转同步模式中二维、三维平板升力系数变化不明显,旋转滞后模式中仅当小角振幅且小平移振幅时,三维平板升力系数增加较大. Aim at micro air vehicles,two-dimensional and three-dimensional flapping flat plate lift performance of advanced,synchronized and delayed rotation were numerically investigated by dynamic mesh method.The vortices and lift changes versus kinematic motions were highlighted to analyze the relationship between lift performance and kinematic motions.Numerical results show that the lift coefficients of synchronized and advanced rotation model are larger than that of delayed rotation obviously;the lift coefficients of two-dimensional and three-dimensional flapping plate decrease with increasing of angular amplitude and increase with increasing phase lag,while the influence of plunging amplitude is less relatively.The lift coefficients of three-dimensional plate are larger than two-dimensional plate in advanced rotation model with higher angular amplitude,also in delayed rotation only when lower angular amplitude and shorter plunging amplitude.The lift coefficients of two-dimensional and three-dimensional flapping plate are not changed significantly in synchronized rotation with higher angular amplitude.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期59-62,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50879014)
关键词 平板 动网格 升力 振幅 相位差 压力分布 flat plate dynamic mesh lift amplitude phase lag pressure distribution
  • 相关文献

参考文献3

二级参考文献21

  • 1刘岚,方宗德,侯宇,傅卫平,吴立言.微型扑翼飞行器的气动建模分析与试验[J].航空动力学报,2005,20(1):22-28. 被引量:15
  • 2赵攀峰,刘春阳,魏榛,李振国,刘曦,郑明章,杨基明.一种扑翼运动的模型实验及流场测量方法[J].实验力学,2004,19(4):408-414. 被引量:6
  • 3Ellington C P, Machin K E, Casey T M.Oxygen consumption of bumblebees in forward flight[J]. Nature, 1990, 347: 472-473.
  • 4Dickinson M H, Fritz-Olaf Lehman, Sanjay P Sane. Wing rotation and the aerodynamic basis of insect flight [J]. Science, 1999,284 : 1954-1960.
  • 5Liu H, Ellington C P, kawachi K, et al. A CFD study of hawk moth hovering [J]. JExp. Biol., 1998, 201(4): 461-477.
  • 6孙茂,唐剑.Unsteady aerodynamic force generation by a model fruit fly wing in flap-ping motion[J].J Exp.Biol.,2002,205:55—70.
  • 7ZHAO Pan-Feng, LIU Chun-Yang, YANG Ji-Ming. A flapping model wing experiment for insect flight investigation[A]. 2nd ISAB-MEC[C], Honolulu, Hawaii, September 14-17.
  • 8Lauder G V. Flight of the robofly[J]. Nature, 2001, 412: 688-689.
  • 9Ellington C P. The aerodynamics of hoveringin sect flight. IL Morphological parameters[J]. Phil. Trans. R. Soc. Lond B, 1984b,305.- 17-40.
  • 10Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production[J]. J Exp. Biol. , 1973, 59: 169-230.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部