期刊文献+

Riemann boundary value problems and reflection of shock for the Chaplygin gas 被引量:8

Riemann boundary value problems and reflection of shock for the Chaplygin gas
原文传递
导出
摘要 In this paper,we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively,where one sector is a quadrant and the other one has an acute vertex angle.We prove that the Riemann boundary value problem admits a global self-similar solution,if either the initial states are close,or the smaller sector is also near a quadrant.Our result can be applied to solving the problem of shock reflection by a ramp. In this paper, we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively, where one sector is a quadrant and the other one has an acute vertex angle. We prove that the Riemann boundary value problem admits a global self-similar solution, if either the initial states are close, or the smaller sector is also near a quadrant. Our result can be applied to solving the problem of shock reflection by a ramp.
出处 《Science China Mathematics》 SCIE 2012年第4期671-685,共15页 中国科学:数学(英文版)
基金 supported in part by National Natural Science Foundation of China(Grant No. 11031001) the Doctorial Foundation of National Educational Ministry (Grant No. 20090071110002) Tianyuan Fund of Mathematics (Grant No. 11126181)
关键词 Riemann boundary value problem reflection of shock Chaplygin gas wave interaction Eulersystem Riemann边值问题 气体 休克 初始状态 自相似性 顶点角 象限 欧拉
  • 相关文献

参考文献19

  • 1Bressan A. Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications. vol. 20. Oxford: Oxford University Press, 2000.
  • 2ani S, Keyfitz B L. Riemann problems for the two-dimensional unsteady transonic small disturbance equation. SIAM J Appl Math, 1998, 58: 636–665.
  • 3Chen G Q, Feldman M. Global solutions of shock reflection by large-angle wedges for potential flow. Ann of Math (2), 2010, 171: 1067–1182.
  • 4Chen S X. Cauchy problem for a class of semilinear hyperbolic equations with Y -shape discontinuous data. Acta Math Sin (Engl Ser), 1995, 11: 171–185.
  • 5Chen S X. Solution to M-D Riemann problems for quasilinear hyperbolic system of proportional conservation laws. In Nonlinear Evolutionary Partial Differential Equations. AMS/IP Stud Adv Math, vol. 3. Providence, RI: Amer Math Soc, 1997, 3, 157–173.
  • 6Chen S X, Qu A F. Two-dimensional Riemann problems for the Chaplygin gas. SIAM J Math Anal, in press.
  • 7Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Springer-Verlag, 1976.
  • 8Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Berlin: Springer-Verlag, 2001.
  • 9Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18: 697–715.
  • 10Grisvard P. Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Boston, MA: Pitman, 1985.

同被引文献12

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部