期刊文献+

A direct product decomposition of QMV algebras

A direct product decomposition of QMV algebras
原文传递
导出
摘要 We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempo- tent element of a given QMV algebra,if it commutes with every element of the QMV algebra,it can induce a direct product decomposition of the QMV algebra.At the same time,we introduce the commutant C(S) of a set S in a QMV algebra,and prove that when S consists of idempotent elements,C(S) is a subalgebra of the QMV algebra.This also generalizes the cases of orthomodular lattices. We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices). In detail, for an idempotent element of a given QMV algebra, if it commutes with every element of the QMV algebra, it can induce a direct product decomposition of the QMV algebra. At the same time, we introduce the commutant C(S) of a set S in a QMV algebra, and prove that when S consists of idempotent elements, C(S) is a subalgebra of the QMV algebra. This also generalizes the cases of orthomodular lattices.
出处 《Science China Mathematics》 SCIE 2012年第4期841-850,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 60736011, 61073023 and 60603002) the National Basic Research Program of China (973 Program) (Grant No. 2009CB320701)
关键词 QMV algebra COMMUTATIVITY IDEMPOTENT decomposition theorem 代数分解 产品 正交模格 元素组成 分解定理 子代数 幂等 量子
  • 相关文献

参考文献19

  • 1Birkhoff G, Von Neumann J. The logic of quantum mechanics. Ann of Math, 1936, 37: 823–843.
  • 2Chang C C. Algebraic analysis of many valued logics. Trans Amer Math Soc, 1958, 88: 476–490.
  • 3Chang C C. A new proof of the completeness of Lukasiewicz Axioms. Trans Amer Math Soc, 1959, 93: 74–80.
  • 4Dalla Chiara M L, Giuntini R. Fuzzy quantum logics. Mathware Soft Comput, 1996, 3: 83–91.
  • 5Dalla Chiara M L, Giuntini R, Greechie R. Reasoning in Quantum Theory—Sharp and Unsharp Quantum Logics. Kluwer: Academic Publishers, 2004.
  • 6Dvurecenskij A, PulmannováS. New Trends in Quantum Structures. Bratislava: Ister Science, 2000.
  • 7Foulis D J, Bennett M K. Effect algebras and unsharp quantum logics. Found Phys, 1994, 24: 1331–1352.
  • 8Foulis D J, PulmannováS. Type-decomposition of an effect algebra. Found Phys, 2010, 40: 1543–1565.
  • 9Foulis D J, PulmannováS, VincekováE. Type-decomposition of a pseudoeffect algebra. J Aust Math Soc, 2010, 89: 335–358.
  • 10Giuntini R. Quasilinear QMV algebras. Int J Theor Phys, 1995, 34: 1397–1407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部