期刊文献+

Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria 被引量:5

Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria
原文传递
导出
摘要 In this paper,the image space analysis (for short,ISA) is employed to investigate variational in- equalities (for short,VI) with cone constraints.Linear separation for VI with cone constraints is characterized by using the normal cone to a regularization of the image,and saddle points of the generalized Lagrangian func- tion.Lagrangian-type necessary and sufficient optimality conditions for VI with cone constraints are presented by using a separation theorem.Gap functions and weak sharpness for VI with cone constraints are also investi- gated.Finally,the obtained results are applied to standard and time-dependent traffic equilibria introduced by Daniele,Maugeri and Oettli. In this paper, the image space analysis (for short, ISA) is employed to investigate variational inequalities (for short, VI) with cone constraints. Linear separation for VI with cone constraints is characterized by using the normal cone to a regularization of the image, and saddle points of the generalized Lagrangian function. Lagrangian-type necessary and sufficient optimality conditions for VI with cone constraints are presented by using a separation theorem. Gap functions and weak sharpness for VI with cone constraints are also investigated. Finally, the obtained results are applied to standard and time-dependent traffic equilibria introduced by Daniele, Maugeri and Oettli.
出处 《Science China Mathematics》 SCIE 2012年第4期851-868,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grants Nos. 60804065, 70831005) the Key Project of Chinese Ministry of Education (Grant No. 211163) Sichuan Youth Science and Technology Foundation and the Research Foundation of China West Normal University (Grant No. 08B075)
关键词 variational inequality image space analysis linear separation necessary and sufficient optimalitycondition traffic equilibrium 变分不等式 空间分析 交通 应用 拉格朗日函数 图片 分离定理 时间依赖
  • 相关文献

参考文献1

二级参考文献33

  • 1X. Y. Zheng,X. M. Yang,K. L. Teo.Sharp Minima for Multiobjective Optimization in Banach Spaces[J]. Set - Valued Analysis . 2006 (4)
  • 2B. Jiménez.Strict Minimality Conditions in Nondifferentiable Multiobjective Programming[J]. Journal of Optimization Theory and Applications . 2003 (1)
  • 3E. K. Makarov,N. N. Rachkovski.Efficient Sets of Convex Compacta are Arcwise Connected[J]. Journal of Optimization Theory and Applications . 2001 (1)
  • 4L. V. Thuan,D. T. Luc.On Sensitivity in Linear Multiobjective Programming[J]. Journal of Optimization Theory and Applications . 2000 (3)
  • 5H. P. Benson,E. Sun.Outcome Space Partition of the Weight Set in Multiobjective Linear Programming[J]. Journal of Optimization Theory and Applications . 2000 (1)
  • 6X. Y. Zheng.Contractibility and Connectedness of Efficient Point Sets[J]. Journal of Optimization Theory and Applications . 2000 (3)
  • 7E. J. Sun.On the connectedness of the efficient set for strictly quasiconvex vector minimization problems[J]. Journal of Optimization Theory and Applications . 1996 (2)
  • 8Paul Armand.Finding all maximal efficient faces in multiobjective linear programming[J]. Mathematical Programming . 1993 (1-3)
  • 9G. R. Bitran,T. L. Magnanti.The structure of admissible points with respect to cone dominance[J]. Journal of Optimization Theory and Applications . 1979 (4)
  • 10Armand P.Finding all maximal eflcient faces in multiobjecture linear programming. Mathematical Programming . 1993

共引文献5

同被引文献22

  • 1Chinaie M, Zafarani J. Image Space Analysis and Scalarization of Multivalued Optimization [J]. Journal of Optimization Theory and Applications, 2009, 142(3): 451-467.
  • 2Chinaie M, Zafarani J. Image Space Analysis and Scalarization for e-Optimization of Multifuctions [J]. Journal of Optimization Theory and Applications, 2013, 157(3): 685-695.
  • 3Mastroeni G. Some Applications of the Image Space Analysis to the Duality Theory for Constrained Extremum Problems [J]. Journal of Global Optimization, 2010, 46(4) : 603-614.
  • 4Mastroeni G. A Separation Approach to Vector Quasi-equilibrium Problems: Saddle Point and Gap Function [J]. Taiwan Residents Journal of Mathematics, 2009, 13(2B) : 657-673.
  • 5Mastroeni G. On the Image Space Analysis for Vector Quasi-equilibrium Problems with a Variable Ordering Relation [J]. Journal of Global Optimization, 2012, 53(2) : 203-214.
  • 6Mastroeni G, Pellegrini L. Conic Separation for Vector Optimization Problems [J]. Optimization, 2011, 60(1/2) : 129-142.
  • 7Mastroeni G. Optimality Conditions and Image Space Analysis for Vector Optimization Problems [M]. Berlin: Springer-Verlag, 2012: 169-220.
  • 8Hiriart-Urruty J B. Tangent Cone, Generalized Gradients and Mathematical Programming in Bananch Spaces [J]. Mathematics of Operation Research, 1979, 4 (1) : 79-97.
  • 9Li S J, Xu Y D, Zhu S K. Nonlinear Separation Approach to Constrained Extremum Problems [J]. Journal of Optimization Theory and Applications, 2012, 154(3): 842-856.
  • 10Miglierina E. Characterization of Solutions of Multiobjective Optimization Problems [J]. Rendiconti del Circolo Matematico di Palermo, 2001, 50(1): 153-164.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部