期刊文献+

多智能体系统实现鲁棒一致的时延相关稳定判据 被引量:9

Delay-dependent stability criteria for robust consensus of multi-agent systems
原文传递
导出
摘要 考虑存在多个时变时延、有限能量扰动以及时变拓扑结构不确定等网络约束条件,给出了多智能体系统实现鲁棒一致性的时延相关稳定判据.首先,利用状态分解将原问题转化为讨论不一致向量系统的鲁棒稳定性;然后,考虑到多个时变时延和动态拓扑,采用构造Lyapunov-Krasovskii泛函的方式分析系统鲁棒稳定性,并利用自由权矩阵方法获得关于非线性矩阵不等式(NLMI)的可行解判据;最后,借鉴求解锥补问题的思想,对NLMI判据进行非线性最小化处理,以得到保守性低、易于求解的LMI稳定判据.数值实例和仿真结果均验证了所提出判据的有效性. Considering the network restrictions such as multiple time-varying delays, disturbances with limited energy and time-varying topologies uncertainties, the delay-dependent stability criteria for robust consensus of multi-agent systems are proposed. Firstly, by using the idea of state decomposition, the condition for guaranteeing robust consensus is converted into verifying the robust stability of the disagreement systems. Considering multiple time-varying delays and switching topologies, Lyapunov-Krasovskii functional is constructed to analyse the robust stability. By using free-weighting matrices(FWM) method, the stability criteria can be obtained through solving the corresponding feasible nonlinear matrix inequality nonlinear matrix inequality(NLMI). Finally, according to solving cone complementarity problem, nonlinear minimization is employed to obtain the LMI criteria with lower conservativeness and be solved easily. Numerical examples and simulation results show the effectiveness of the proposed criteria.
出处 《控制与决策》 EI CSCD 北大核心 2012年第4期584-592,共9页 Control and Decision
基金 国防基础研究项目(A2820080247) 国家安全基础研究项目(6138101001)
关键词 鲁棒一致性 LYAPUNOV-KRASOVSKII泛函 非线性矩阵不等式 自由权矩阵 robust consensus Lyapunov-Krasovskii functional nonlinear matrix inequality flee-weighting matrices
  • 相关文献

参考文献2

二级参考文献21

  • 1Jing HAN,Ming LI,Lei GUO.SOFT CONTROL ON COLLECTIVE BEHAVIOR OF A GROUP OF AUTONOMOUS AGENTS BY A SHILL AGENT[J].Journal of Systems Science & Complexity,2006,19(1):54-62. 被引量:23
  • 2Vicsek T, Czirok A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
  • 3Czirok A and Vicsek T 2000 Phys. A 281 17
  • 4Amritkar R and Jalan S 2003 Phys. A 321 220
  • 5Olfati-Saber R and Murray R 2004 IEEE Trans. Autom. Contr. 49 1520
  • 6Olfati-Saber R 2006 IEEE Trans. Autom. Contr. 51 401
  • 7Hu J P and Hong Y G 2007 Phys. A 374 853
  • 8Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Autom. Contr. 48 988
  • 9Por^-ri M and Stilwell D J 2007 IEEE Trans. Aurora. Contr. 52 1767
  • 10Wang L and Xiao F 2007 Sci. Chin. Ser. F-Inf. Sci. 50 625

共引文献5

同被引文献182

  • 1王昊宇,徐学强,房玉军.网络化协同打击弹药技术[J].兵工学报,2010,31(S2):136-139. 被引量:14
  • 2石晓航,梁青阳,张庆杰,王俊生,沈锡强.DC-IMM估计方法在多UAV协同目标跟踪中的应用[J].中南大学学报(自然科学版),2013,44(S2):52-57. 被引量:3
  • 3段广仁,王好谦.多模型切换控制及其在BTT导弹设计中的应用[J].航空学报,2005,26(2):144-147. 被引量:22
  • 4FAX A J, MURRAY R M. Information flow and cooperative control of vehicle formations [J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465 - 1476.
  • 5TAHBAZ-SALEHI A, JADBABAIE A. A necessary and sufficient condition for consensus over random networks [J]. IEEE Transactions on Automatic Control, 2008, 53(3): 791 - 795.
  • 6TAHBAZ-SALEHI A, JADBABAIE A. Consensus over ergodic sta- tionary graph processes [J]. IEEE Transactions on Automatic Control, 2010, 55(1): 230 - 235.
  • 7REN W. Multi-vehicle consensus with a time-varying reference state [J]. Systems & Control Letters, 2007, 56(7): 474 -483.
  • 8WANG L, XIAO F. Finite-time consensus problems for networks of dynamic agents [J]. 1EEE Transactions on Automatic Control, 2010, 55(1): 950 - 955.
  • 9REN W. Consensus tracking under directed interaction topologies: Algorithms and experiments [J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 230- 237.
  • 10REYNOLDS C. Flocks, herds, and schools: A distributed behavioral model [J]. Computer Graphics, 1987, 21(4): 25 - 34.

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部