期刊文献+

一种多时间间隔序列模式挖掘算法 被引量:3

An Efficient Algorithm for Mining of Multi-time-interval Sequential Patterns
下载PDF
导出
摘要 提出一种多时间间隔的序列模式挖掘算法,依据挖掘的实际情况设置可变的时间区间,采用有效的剪枝策略,分区间精确显示多时间间隔序列模式挖掘结果.实验证明,算法具有较高的挖掘性能. In this paper,we present an efficient algorithm for mining of multi-time-interval sequential patterns.The proposal algorithm set a dynamic time-interval based on the mining process,alone with the use of efficient prune techniques,the mining results are shown in a precise way.Experimental results also show that the algorithm has high performance.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第4期10-13,共4页 Microelectronics & Computer
基金 国家自然科学基金(60875029) 北京市科技计划专项课题
关键词 数据挖掘 序列模式 多时间间隔 data mining sequential patterns multi-time-interval
  • 相关文献

参考文献8

  • 1Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements[C].// Proceedings of the 5th International Conference on Extending Database Technology. Ausrila: Badvoslan,1996: 3-17.
  • 2Pei J, Han J. PrefixSpan:mining sequential patterns efficiently by prefix2p rojected pattern growth [C].// Proc of the 7 th International Conference on Data Engineering. Washington DC: IEEE Computer Society, 2001: 215-224.
  • 3Zakim J. Spade.. an efficient algorithm for mining frequent sequences [J]. Machine Learning, 2001, 41 (1): 31-60.
  • 4吴聪聪,李忠哗,何丕廉.基于矩阵的最大频繁模式挖掘及其更新算法[J].微电子学与计算机,2007,24(12):29-31. 被引量:4
  • 5缪裕青,尹东.分布式存储结构的频繁闭合模式挖掘并行算法[J].微电子学与计算机,2007,24(10):161-163. 被引量:3
  • 6Chen Yenliang, Chiang Meiching , Ko Mingtat. Discovering time-interval sequential patterns in sequence databases [J]. Expert Systems with Applications, 2003(25) : 343-354.
  • 7Hu Yahan , Tony Cheng-kui Huang, Yang HuiRu, et al. On mining multi-time-interval sequential patterns [J]. Data: Knowledge Engineering, 2009 (68): 1112-1127.
  • 8Agrawal R, Srikant R. Mining sequential patterns[C] //Proceedings of the llth International Confence on Data Engineering. Taiwan Taipei, 1995:3-14.

二级参考文献11

  • 1缪裕青.频繁闭合项目集的并行挖掘算法研究[J].计算机科学,2004,31(5):166-168. 被引量:5
  • 2徐瑞,乔志萍,李伟华.单维关联规则快速Apriori算法研究[J].微电子学与计算机,2005,22(2):43-45. 被引量:5
  • 3陈凯,冯全源.最大频繁项集的高效挖掘[J].微电子学与计算机,2005,22(8):22-25. 被引量:13
  • 4Grahne G,Zhu J.Efficiently using prefix-trees in mining frequent Itemseta[C].Proceedings of the HMI'03 Workshop on Frequent Itemsets Mining Implementations,2003:1-3
  • 5Tang P,Ning L,Wu N.Domain and data paritioning for parallel mining of frequent closed itemsets[C].Proceedings of the 43th Annual Southeast Regional Conference,Kennesaww,GA,USA:ACM Press,2005:250-252
  • 6Javed A,Khokhar A.Frequent pattern mining on message passing multiprocessor Systems[J].Distributed and Parallel Databases,2004,16:321-322
  • 7Agrawalr, Imiel Inski T, Swamia. Mining association rules between sets of items in large databases [A]. Proc of the ACM SIGMOD Conf on Management of Data (SIGMOD) [C]. New York: ACM Press, 1993:207-216
  • 8Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [A]. Proc. of the 20th Int'l Conf on Very Large Data Bases [C]. Santiago: Morgan Kaufmann, 1994:478-499
  • 9Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation [C]. In: Proc of ACM2SIGMOD Int'l Conf on Man2 agement of Datal Dallas [C]. TX: ACM Press, 2000, 1:1-12
  • 10路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献5

同被引文献20

  • 1张利军,李战怀,王淼.基于位置信息的序列模式挖掘算法[J].计算机应用研究,2009,26(2):529-531. 被引量:12
  • 2龚振志,胡孔法,达庆利,张长海.DMGSP:一种快速分布式全局序列模式挖掘算法[J].东南大学学报(自然科学版),2007,37(4):574-579. 被引量:2
  • 3Fosca Giannotti, MircoNanni, DinoPedreschi , et al. Trajectory pattern mining [C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Diseovery and Data Mining. New York, NY, USA: ACM, 2007 : 330-339.
  • 4Srikant R, Agrawal P,. Mining sequential patterns: gen- eralizations and performance improvnents[C]//Proc In- ternational Conference on Extending Database Technolo- gy. Avignon, France:IEEE,1996.
  • 5Pei J, Han J. Prefixspan: mining sequential patterns effi- ciently by prefix-projected pattern growth[C]//Proceed- ings of the 17th International Conference on Data Engi- neering. Washington DC: IEEE Computer Society, 2001.
  • 6Gaffney S, Smyth P. Trajectory clustering with mix- tures of regression models[C-]//Proc 5th ACM SIGK- DD Inttl COnf on Knowledge Discovery and Data Min- ing. San Diego, California: IEEE, 1999.
  • 7Giannotti F, Nanni M, Pedreschi D. Efficient mining of sequences with temporal annotations[C]//Proc SI- AM Conference on Data Mining. 13ethesda, MD, USA: IEEE, 2006 : 346-357.
  • 8Agrawal R, Srikant R. Mining sequential patterns [ C ]//Proc of the 11 th International Conference on Data Engineering. Washington DC: IEEE Computer Society, 1995 : 3-14.
  • 9Srikant R, Agrawal R. Mining sequential pattern:generalizations and performance improvements[ M ]. Berlin : Springer, 1996.
  • 10Zaki M. SPADE:an efficient algorithm for mining frequent sequences [ J]. Machine Learning,2001,41 (2) :31-60.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部