摘要
提出了一种基于图像全局和局部颜色特征的图像检索方法.首先在符合视觉感知特性的Lab颜色空间中提取全局颜色特征;再对图像进行图像子块划分,同时利用具有人眼视觉特性的高斯加权系数对其进行加权,然后利用二值化得到的颜色位图作为局部颜色特征,并进一步加入了方向性的考虑,对图像子块进行垂直和水平投影,最后合理地融合了全局和局部颜色特征的相似性进行图像检索.对Corel图像数据库的实验结果表明,此算法具有良好的检索效率.
This paper proposes an image retrieval algorithm based on global and local color features.First,global color features are extracted from Lab color space which is consistent with human visual perception,and Gaussian weighting coefficients are applied to the image which is divided into sub-blocks.Then the binary color bitmap is used as local color feature.Furthermore,directions are taken into account and the image is horizontally and vertically projected.At last,similarities of global and local color features are combined reasonably in image retrieval.The results using Corel Image Database show that the proposed algorithm obviously outperforms previous work[1].
出处
《微电子学与计算机》
CSCD
北大核心
2012年第4期104-109,共6页
Microelectronics & Computer
基金
高校博士点专项基金资助项目(20100201110030)
陕西省科学技术攻关资助项目(2008K04-01)
浙江大学开放基金(A1115)
中兴通讯技术开发项目(201112045)
关键词
图像检索
颜色均值
子块划分
方向性
CBIR
mean value of color
sub-block dividing
directivity