期刊文献+

LUV色彩空间中多层次化结构Nystrm方法的自适应谱聚类算法 被引量:5

Adaptive spectral clustering algorithm based on Nystrm method with multi-level structure in LUV color space
原文传递
导出
摘要 提出一种在LUV空间中基于多层次化结构Nystrm方法的自适应谱聚类算法。首先引入LUV色彩空间,避免了RGB色彩空间中色彩辨别阈对分割的影响,在纹理、边缘区域取得了更好的分割效果;其次将谱聚类算法中基于多层次化结构的方法和基于Nystrm采样的方法结合起来,有效减少了运算时间、解决了数据量较大时计算过程中内存溢出的问题;最后在K均值聚类中通过对特征间隙(eigengap)的分析,自适应地选择K值的大小,解决了自动确定聚类数目的问题。将提出的方法在LUV色彩空间中和RGB色彩空间中分别进行图像分割实验,结果表明在LUV色彩空间中取得效果更加理想。同时也将提出的算法与基于Nystrm方法的谱聚类算法(spectral clustering-Nystrm,SC-N)进行比较。实验结果表明,该算法在数据运算量、运行时间和分割结果上都优于SC-N方法。 In this paper, we propose an adaptive spectral clustering algorithm based on the Nystrom method with multi- level structures in LUV color space. First, we introduce the LUV color space, which can effectively avoid the influence of barely noticeable differences on the segmentation results, achieving better result in texture and edge regions. Second, we combine the spectral clustering algorithm based on multi-level structure and the Nystrsm method. Our approach can reduce the operation time and solve the problem of memory overflow. Finally, in K-means, through the analysis of the eigengap to adaptive select the value of K, this approach can automatically determine the number of clusters. The proposed method is applied to image segmentation, respectively, in LUV color space and RGB color space. The experimental results show that in LUV color space we can obtain even better results. The data computation and operation time as well as the segmentation result of the proposed algorithm are superior, compared to the spectral clustering algorithm based on the Nystrom method (SC-N).
出处 《中国图象图形学报》 CSCD 北大核心 2012年第4期530-536,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(40671133) 中央高校基本科研业务费专项资金(GK200902015)
关键词 LUV色彩空间 多层次化结构Nystrm方法 自适应K均值算法 谱聚类 彩色图像分割 LUV color space Nystrom method with multi-level structure adaptive K-means spectral clustering color image segmentation
  • 相关文献

参考文献3

二级参考文献21

  • 1TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 2AZRAN A, GHAHRAMANI Z. Spectral methods for automatic multiscale data clustering[ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006 : 190 - 197.
  • 3NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[ C]//Proc of Advances in Neural Information Processing Systems. 2001:585-591.
  • 4POLITO M, PERONA P. Grouping and dimensionality reduction by locally linear embedding[ C]//Proc of Advances in Neural Information Processing Systems. 2002:1255-1262.
  • 5ZELNIK-MANOR L, PERONA P. Self-tuning spectral clustering[ C]// Proc of Advances in Neural Information Processing Systems. Cambridge : MIT Press, 2005 : 1601-1608.
  • 6Berkeley segmentation dataset [ EB/OL ]. ( 2003-10-31 ) [ 2008- 01- 10 ]. http ://www. eecs. berkeley, edu/Research/Projects/CS/vision/ groupingc'segbench/BSDS300/html/dataset/images, html.
  • 7FiEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98) :298-305.
  • 8LUXBURG von U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4) :395-416.
  • 9NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[ C ]//Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2002.
  • 10SHI J, MALIK J. Normalized cuts and image segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.

共引文献39

同被引文献39

  • 1Marr D, Hildreth E. Theory of edge detection [ J ]. Proc R soc lond B, 1980,207(1167) : 187 - 217.
  • 2Nademejad E, Shaarifzadeh S, Hassanpour H. Edge detection techniques: evaluations and comparison[ J ]. Applied Mathemat- ical Sciences,2008,2(31 ):1507- 1520.
  • 3Evans A N, Liu X U. A morphological gradient approach to color edge detecfion[ J]. IEEE Transactions on Image Process- in~,2006,15(6) : 1454 - 1463.
  • 4GNANATHEJA R V, SREENIVASULU R. YCoCg color im- age edge detection[ J]. International Journal of Engineering Re- search and Applications.2012,2(2): 152- 156.
  • 5Gonzalez R C, Woods R E. Digital Image Processing Third Edition [ M]. Beijing: Publishing House of Electronics Industry, 2010.
  • 6Nobuatsu S, Abiko. Method and apparatus for calculating dis- tances and reflection differences between measurement points on printed matter to evaluate image quality: US 7,633,648 B2 [P] .2009.
  • 7陈允杰,张建伟,韦志辉,王平安,夏德深.基于HSV颜色空间的中国虚拟人脑图像自动分割方法[J].计算机研究与发展,2007,44(12):2036-2043. 被引量:7
  • 8GHAMISI P, BENEDIKTSSON J A, ULFARSSON M O.Spectral-spatial classification of hyperspectral images based on hidden Markov random fields [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 ( 5 ) : 2565- 2574.
  • 9SUBUDHI B N, BOVOLO F, GHOSH A, et al. Spatio-con- textual fuzzy clustering with Markov random field model for change detection in remotely sensed images [ J ]. Optics & Laser Technology, 2014, 57:284-292.
  • 10SZIRANYI T, SHADAYDEH M. Segmentation of remote sensing images using similarity-measure-based fusion- MRF model [ J ]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (9) : 1544-1548.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部