期刊文献+

光学遥感舰船目标识别方法 被引量:17

Method for ship recognition using optical remote sensing data
原文传递
导出
摘要 提出一种基于粗糙集理论和分层判别回归技术的光学遥感舰船目标识别方法。该方法首先提出新的光学遥感舰船识别特征———面积比编码,并与四类特征组合作为备选特征;然后基于粗糙集理论按同可区分度来计算各备选特征的重要性权值,自动选择出对正确识别贡献较大的特征组合;最后根据分层判别回归原理生成分类判决树来识别光学遥感舰船目标。实验结果表明,本文方法在识别精度和速度方面优于最近邻和支持向量机方法,且通用可行。 A new method for ship recognition using optical remote sensing data based on rough set and hierarchical discriminant regression (HDR) is presented in this paper. First, a new shape feature called area ratio code (ARC) is proposed and extracted as a candidate feature. Based on the rough set theory, the common discernibility degree is used to compute the significance weight of each candidate feature and select valid recognition features automatically. Ultimately, a decision tree based on the HDR theory is built to recognize ships in data from optical remote sensing systems. Experimental results on real data show that the proposed method is generalizable and can get better classification rates at a higher speed than the KNN or SVM method.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第4期589-595,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(40901216)
关键词 舰船目标识别 面积比编码 粗糙集 分层判别回归 遥感 ship recognition area ratio code rough set hierarchical discriminant regression remote sensing
  • 相关文献

参考文献14

  • 1Zabidi M M A, Mustapa J, et al. Embedded vision systems for ship recognition//IEEE TENCON. Washington DC, USA: IEEE Computer Society, 2009: 1-5.
  • 2Alves J, Herman J, Rowe N C. Robust Recognition of Shiptypes from an Infrared Silhouette. Monterey, CA, USA: Naval Postgraduate School, 2004.
  • 3Luo Q, Khoshgoftaar T M, et al. Classification of ships in surveillance video//IEEE International Conference Information Reuse and Integration. Washington DC, USA: IEEE Computer Society, 2006: 432-437.
  • 4Li H, Wang X. Automatic recognition of ship types from infrared images using support vector machines//International Conference on Computer Science and Software Engineering. Washington DC, USA: IEEE Computer Society, 2008, 6:483-486.
  • 5Lan J, Wan L. Automatic ship target classification based on aerial images //Proceedings of SPIE. Bellingham Wash: SPIE, 2009,7156(12):1-10.
  • 6Antelo J, Ambrosio G, Gonzalez J, et al. Ship detection and recognition in high resolution satellite images//IEEE International Geoscience and Remote Sensing Symposium. Washington DC, USA: IEEE Computer Society, 2009, 4:514-517.
  • 7Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. London: Kluwer Academic Publisher, 1991.
  • 8Hwang W S, Weng J Y. Hierarchical discriminant regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1277-1293.
  • 9Weng J Y, Hwang W. Incremental hierarchical discriminant regression[J]. IEEE Transactions on Neural Networks, 2007, 18(2):397-415.
  • 10Driggers R G, Cox P, Kelley M. National imagery interpretation rating system and the probabilities of detection, recognition and identification[J]. Optical Engineering, 1997, 36(7):1952-1959.

二级参考文献18

共引文献10

同被引文献148

引证文献17

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部