期刊文献+

基于复杂系统遗传算法的多路径覆盖测试用例生成方法 被引量:3

Multiple Paths Test Case Generation Based on Complex System Genetic Algorithm
下载PDF
导出
摘要 针对目前复杂系统多路径覆盖测试用例生成方法较少的问题,提出一种新的基于复杂系统的多路径覆盖测试用例生成方法。首先改进遗传算法,在种群进化中对父代选择、个体进化的学习能力和种群的自适应更新方法进行改进,以有效避免算法收敛过慢或者"早熟"现象。然后根据多路径覆盖测试的特点与要求,设计基于路径匹配的适应度函数,使得运行一次算法便可生成覆盖多条目标路径的多个测试用例。最后将该方法用于几个基准程序。实验结果表明,与已有方法比较,此方法的测试用例生成效率显著提高。 In the light of the lack of effective methods to generating test case for multiple paths coverage based on complex system,we proposed a novel evolutionary generation approach of test case for multiple paths coverage.First,generic algorithm was improved:the ability of parent evolutionary selection,individual evolution and adaptive update method of populations were improved in the evolution of population,which cound solve the algorithm for early slow convergence or premature effectively.And then,according to the features and requirements of multiple paths coverage,fitness function based on path-match was designed so that in one run,it was able to generate multiple test data to cover multiple target paths.Finally,the proposed approach was applied into several benchmark programs.The experimental results show that the proposed approach can improve the efficiency of test data generation effectively.
出处 《计算机科学》 CSCD 北大核心 2012年第4期139-141,153,共4页 Computer Science
基金 国家自然科学基金(60970032) 江苏省自然科学基金(BK2008124) 江苏省"青蓝工程" 江苏省研究生培养创新工程项目(CX10B_157Z)资助
关键词 复杂系统 多路径覆盖 测试用例生成 遗传算法 适应度函数 Complex system Multiple paths coverage Test case generating Genetic algorithms Fitness function
  • 相关文献

参考文献6

  • 1Wikipedia.Genetic algorithm[G/OL][]..2011
  • 2Tan X B,Cheng Long-xin,Xu Xiu-mei.Test Data Generation U-sing Annealing Immune Genetic Algorithm[].Fifth In-ternational Joint Conference on INCIMS and IDC.
  • 3Ahmed M A,Hermadi I.GA-based multiple paths test data gen-erator[].Computers and Operations Research.2008
  • 4Rahila Patel,M. M Raghuwanshi,AnilN. Jaiswal.Modifying Genetic Algorithm with Species and Sexual Selection by using K-means Algorithm[].IEE International Advance Comnputing Conference.2009
  • 5Rajappa D V,Biradar A,Panda S.Efficient Software Test CaseGeneration Using Genetic Algorithm Based Graph Theory[].First International Conference on Emerging Trends inEngineering and Technology.2008
  • 6Albert R,A-L Barabasi.Diameter of the World Wide Web[].Nature.1999

同被引文献37

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2卢厚清,陈亮,宋以胜,吴值民,邹赟波.一种遗传算法交叉算子的改进算法[J].解放军理工大学学报(自然科学版),2007,8(3):250-253. 被引量:26
  • 3McMINN P. Search-based software test data generation : a survey[ J]. Software Testing, Verification and Reliability, 2004, 14 (2): 105-156.
  • 4WINDISCH A,WAPPLER S,WEGENER J. Applying particle swarm optimization to software testing[ C ]//Proc of the 9th Genetic and Evo- lutionary Computation Conference. New York: ACM Press, 2007: 1121-1128.
  • 5ZHU Xiao-mei, YANG Xian-feng. Software test data generation auto- matically based on improved adaptive particle swarm optimizer [ C ]// Proc of International Conference on Computational and Information Sciences. 2010 : 1300-1303.
  • 6SRINIVAS M,PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms I J]. IEEE Trans on Systems, Man and Cybernetics,1994,24(4) :656-667.
  • 7McMINN P, HARMAN M, LAKHOTIA I,et al. Input domain reduc- tion through irrelevant variable removal and its effect on local, global and hybrid search-based structural test data generation [ J]. IEEE Trans on Software Engineering,2012,23(4) :453-477.
  • 8DIAZ E, TUYA J, BLANCO R, et al. A Tabu search algorithm for structural software testing [ J ]. Computers and Operations, 2008, 35(10) ,3050- 3070.
  • 9李爱国,张艳丽.基于PSO的软件结构测试数据自动生成方法[J].计算机工程,2008,34(6):93-94. 被引量:23
  • 10陈雨,姚砺.基于改进遗传算法的测试用例生成[J].电子科技,2009,22(7):9-12. 被引量:7

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部