摘要
Nitrate contamination has become one of the most important issues for surface water and groundwater. N2O, with an increasing contribution to global warming, has been more and more attention by the IPCC recently. As well known, denitrification plays a major role in nitrogen cycle of aquatic ecosystems and operates at rates far below its potential under proper conditions. Sediments are the single largest pool of nitrogen in wetland ecosystems. During this process, facultative anaerobic bacteria transform nitrite into nitrogen gas which dissolves in the groundwater and diffuses into the atmosphere finally when it shows up with seepage or spring in the wetland. To seek a mechanistic understanding of N removal in natural wetland ecosystem, a case study was carried in terms of denitrification rate at the Ochi catchment, Chiba, Japan. In this study, samples of intact soil cores in 0–20cm were taken along the groundwater flow path, which including 2 samples in the unsaturated zone and 2 in saturated wetland ecosystem. Denitrification capacity of soil was quantified using acetylene (C2H2) inhibition/gas chromatography ECD method with time intervals of 0, 2, 6, 12, 24 h. Total-N and Total-C contents and amount of denitrifying bacteria were also analyzed. It is found that denitrification ability is low for all 2 samples in the unsaturated zone and high in saturated zone. Results show that N2O emission flux after C2H2-inhibition ranges from 0 to 1.17 gN m^-2h^-1, with an increase value prior 6 hours and slow down after that.
地表水和地下水中硝酸盐污染已成为重要的环境问题之一。随着对全球变暖的贡献增加,N2O(氧化亚氮)也得到IPCC越来越多的关注。反硝化在水生生态系统氮循环过程中起着极为重要的作用。反硝化过程中,厌氧细菌将硝酸盐转化成可溶性亚硝酸盐,最终以N2形式排放到大气。为理解自然湿地生态系统的脱氮机理,以日本千叶县的越智小流域为例开展研究。沿地下水流动方向取原状土,包括2个非饱和带点和2个饱和带点。用乙炔抑制法和带ECD检测器的气相色谱仪于0, 2, 6, 12, 24h测定土壤反硝化能力。同时分析土壤全碳、全氮和反硝化细菌。结果发现,饱和带的反硝化能力高于非饱和带。乙炔抑制后,N2O排放从0-1.17 g Nm-2h-1,前6h增至最大,随后降低。
基金
supported by the 100-Talent Project, Chinese Academy of Sciences and the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (No. 19310004)