期刊文献+

基于韦伯感知和导引滤波分层聚合快速立体图像匹配 被引量:4

Hierarchical Aggregation Fast Stereo Image Matching Based on Weber Perception and Guided Filtering
下载PDF
导出
摘要 该文利用韦伯定律和导引滤波提出基于代价分层聚合的快速立体匹配方法。首先提取立体图像对各彩色通道Weber描述符并初始化匹配代价。利用导引滤波增强匹配代价并提取视差候选;利用候选子集联合空间离散采样与自适应支持权重实现分层代价聚合;据此快速择优选取初始视差。视差求精中采用改进型双边滤波和对称映射后处理有效改善初始视差图中歧义区域。实验表明,该文方法能有效消除匹配歧义,获得分段平滑、高精度稠密视差;结构简单、快速高效且对光照变化具有鲁棒性。 This paper presents a hierarchical cost aggregation-based fast stereo image matching method based on Weber's law and guided filtering.Weber local descriptors for each color channel are firstly extracted from stereo pairs,and raw matching costs between the images are initialized by the descriptors.The matching costs are enhanced with guided filtering to extract the subsets of disparity candidates.Joint spatial discrete sampling and adaptive support weight are utilized to implement hierarchical cost aggregation on the candidate subsets.Then initial disparities from the subsets are selected fast and optimally.Modified bilateral filtering and symmetric warping-based post-processing are sequentially exploited in disparity refining to improve effectively ambiguous regions of initial disparity maps.The experimental results indicate that this proposed technique can obtain piecewise smooth,accurate and dense disparity map while eliminating effectively matching ambiguity.Being concise,fast and high efficiency,and it is robust to illumination change.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第4期992-996,共5页 Journal of Electronics & Information Technology
基金 国家青年科学基金(61001152) 国家自然科学基金(61071166 61071091 61172118) 江苏省自然科学基金(BK2010523) 江苏省高校自然科学基金(11KJB510012) 南京邮电大学校科研基金(NY210053/NY210069/NY210073/NY211030) 江苏高校优势学科建设工程资助课题
关键词 图像处理 立体视觉 韦伯定律 导引滤波 分层聚合 Image processing Stereo vision Weber's law Guided filtering Hierarchical aggregation
  • 相关文献

参考文献1

二级参考文献11

  • 1Hirschmtlller H, Innocent P R, and Garibaldi J. Real-time correlation-based stereo vision with reduced border errors [J]. International Journal of Computer Vision, 2004, 47(1-3): 229-246.
  • 2Mtthlmann K, Maiser D, and Hesser J, et al.. Calculating dense disparity maps from color stereo images, an efficient implementation [J]. International Journal of Computer Vision, 2004, 47(1): 79-88.
  • 3Jia Yun-de, Zhang Xiao-xun, and Li Ming-xiang, et al.. A Miniature Stereo Vision Machine(MSCM-Ⅲ) for dense disparity mapping [C]. Proceedings of 17th International Conference on Pattern Recognition, Cambridge, August, 2004: 728-731.
  • 4Forstman S, Kanou Y, and Ohua J, et al.. Real-time stereo by using dynamic programming [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, DC, Jul.02, 2004, Vol.3: 29.
  • 5Gong M and Yang Y. Near real-time reliable stereo matching using programmable graphic hardware [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition San Diego, Jun.20, 2005, Vol.l: 924-931.
  • 6Wei Yu, Tsuhan C, and Hoe J C. Real time stereo vision using exponential step cost aggregation on GPU [C]. Proceedings of the International Conference on Image Processing, Cairo, Nov. 2009: 4281-4284.
  • 7Woodfill J and Von-Herzen B. Real-time stereo vision on the PARTS reconfigurable computer[C]. Proceedings of 5th IEEE Symposium on FPGAs for Custom Computing Machines, Napa California, Apr. 16, 1997: 201-210.
  • 8Ambrosch K, Humenberger M, and Kubinger W, et aL. Hardware implementation of an SAD based stereo vision algorithm [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Minneapolis, Jun. 17, 2007: 1-6.
  • 9Chen L and Jia Yunde. A Parallel reconfigurable architecture for reM-time stereo vision [C]. Proceedings of the International Conference on Embedded Software and Systems, Hangzhou, May 25, 2009: 32-39.
  • 10Jin S, Cho J, and Phan X, et al.. FPGA design and implementation of a Real-Time stereo vision system[J]. IEEETransaction on Circuits and Systems for Video Technology, 2010, 20(1): 15-26.

共引文献5

同被引文献28

  • 1李从利,韩裕生,冷晓艳,薛模根.序列图像拼接过程中误匹配的消除[J].计算机应用与软件,2006,23(11):93-95. 被引量:6
  • 2关普华.基于依赖分析的贝叶斯网络结构学习[D].吉林:吉林大学,2005.
  • 3Heckennan D. A Bayesian approach for learning causal networks [C]//Proceedings of Eleventh Conference on Uncertainty in Ar- tificial Intelligence. Montreal, QU: Morgan Kaufinann, 2008: 285-295.
  • 4Chickering D, Geiger D, Heckerman D. Learning Bayesian net- works: Search methods and experimental results[C]// Fifth In- ternational Workshop on Artificial Intelligence and Statistics. 2009: 112-128.
  • 5Zhang L, Tam W J. Stereoscopic image generation based on depth images for 3D TV [J]. IEEE Transac- tions on Broadcasting, 2005, 51(2) : 191 -199.
  • 6Mo Y, Liu T, Zhu X, et al. Segment based depth ex- traction approach for monocular image with linear per- spective [ C ]//4th International Conference on Intelli- gence Science and Big Data Engineering (ISclDE). Beiiing, China, 2013 : 168 - 175.
  • 7Nawrot E, Nawrot M. The role of eye movements in depth from motion parallax during infancy[J]. Journal of Vision, 2013, 13(14) : 1 - 13.
  • 8Saxena A, Sun M, Ng A Y. Make3D: learning 3D scene structure from a single still image [J]. IEEE Transactions on Pattern Analysis and Machine InteUi- gence, 2009, 31(5 ) : 824 - 840.
  • 9Karsch K, Liu C, Kang S B. Depth transfer: depth ex- traction from video using non-parametric sampling [J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2014, 11(36): 2144-2158.
  • 10Liu C, Yuen J, Torralba A. SIFT flow: dense corre-spondence across scenes and its applications [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2011,33 (5) : 978 - 994.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部