期刊文献+

基于信息融合的驾驶行为识别技术的研究 被引量:8

A Research on the Technique of Driving Behavior Identification Based on Information Fusion
下载PDF
导出
摘要 通过分析选定驾驶行为的组成主因子,并采用层次分析法确定其权重系数;基于所采集的各主因子的传感器信号,采用BP神经网络和D-S证据理论相结合的多传感器信息融合方法进行驾驶行为识别。仿真结果表明:提出的基于多信息融合的驾驶行为识别方法能准确地识别出常见的驾驶行为。 Main constituent factors of driving behaviors are selected by analyses and their weighting coefficients are determined by analytic hierarchy process. Based on sensors" signals collected of each main factor, the driving behaviors are identified by adopting multi'sensor information fusion technique combining BP neural network with D-S evidence theory. The results of simulation show that the proposed technique for driving behavior identification based on information fusion can accurately identify common driving behaviors.
出处 《汽车工程》 EI CSCD 北大核心 2012年第3期222-226,共5页 Automotive Engineering
基金 中央高校基本科研业务费专项资金项目(2011HGBZ1322) 合肥工业大学校基金(2009HGXJ0088)资助
关键词 驾驶行为识别 信息融合 BP神经网络 D-S证据理论 driving behavior identification information fusion BP neural network D-S evidence theory
  • 相关文献

参考文献2

二级参考文献23

  • 1何友,关欣,衣晓.基于属性测度的辐射源识别方法研究[J].中国科学(E辑),2004,34(12):1329-1336. 被引量:10
  • 2王杰贵,靳学明,罗景青.基于ESM与ELINT信息融合的机载辐射源识别[J].电子学报,2006,34(3):424-428. 被引量:31
  • 3Saaty T L. The Analytic Hierarchy Process [ M ]. New York: McGraw-Hill-Hill Inc, 1980.
  • 4Tetsuya Murai, Yasuo Kudo, Yoshiharu Sato. Association rules and dempster-shafer theory of evidence. DS 2003, LNAI 2843, 2003: 377 - 384.
  • 5Libby E W, Maybeck P S. Sequence comparison techniques for multi-sensor data fusion and target recognition[J]. IEEE Trans Aerospace Electronic System, 1996, 32(1) : 52 - 65.
  • 6DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(4): 325-339.
  • 7LEFEVRE E, COLOT O, VANNOORENBERGHE P, et al. A generic framework of resolving the conflict in the combination of belief structures[C]//In: Proceedings of the 3^rd International Conference on Information Fusion. Paris: ISIF, 2000.
  • 8HAENNI R. Are alternatives to Dempster's rule of combination real alternatives: comments on "about the belief function combination and the conflict management problem"[J]. Information Fusion, 2002, 3(4): 237-239.
  • 9MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1): 1-9.
  • 10JOUSSELME A L, DOMINIC G. BOSSE E. A new distance between two bodies of evidenee[J]. Information Fusion, 2001, 2(2): 91-101.

共引文献78

同被引文献78

  • 1王保华,王伟明,张建武,罗永革.并联混合动力汽车控制策略比较研究[J].系统仿真学报,2006,18(2):401-404. 被引量:19
  • 2李贞,冯晓毅.基于传感器技术的驾驶疲劳检测方法综述[J].测控技术,2007,26(4):1-3. 被引量:15
  • 3袁翔,黄博学,夏晶晶.疲劳驾驶检测方法研究现状[J].公路与汽运,2007(3):51-54. 被引量:11
  • 4候媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
  • 5罗玉涛,胡红斐,沈继军.混合动力电动汽车行驶工况分析与识别[J].华南理工大学学报(自然科学版),2007,35(6):8-13. 被引量:21
  • 6Zhong, Y J, Du L P, Zhang K, et al. Localized Energy Study for Analyzing Driver Fatigue State Based on Wavelet Analysis [ C ]. Proc. Int. Conf. Wavelet Anal. Pattern Recogn. ICWAPR, Bei- jing, China, 2007(4): 1843 -1846.
  • 7Sandberg D, Wahde M. Particle Swarm Optimization of Feedfor- ward Neural Networks for the Detection of Drowsy Driving. Neural Networks [ J ]. IJCNN 2008, Hong Kong, China, 2008:788 - 793.
  • 8King L M, Nguyen H T, Lal S K L. Early Driver Fatigue Detection from Electroencephalography Signals using Artificial Neural Net- works [ C]. Proceedings of the 28th IEEE EMBS Annum Interna- tional Conference, New York City, USA, 2006 : 2187 - 2190.
  • 9Yang G, Lin Y, Bhattacharya P. A Driver Fatigue Recognition Model Using Fusion of Multiple Features [ C ]. Conf. Proc. IEEE In. Conf. Syst. Man Cybern, Waikoloa, HI, United States, 2005 (2) :1777 - 1784.
  • 10DLHall,JLlinas.多传感器数据融合手册[M].杨露菁,耿伯英,译.北京:电子工业出版社,2008.

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部