摘要
通过分析选定驾驶行为的组成主因子,并采用层次分析法确定其权重系数;基于所采集的各主因子的传感器信号,采用BP神经网络和D-S证据理论相结合的多传感器信息融合方法进行驾驶行为识别。仿真结果表明:提出的基于多信息融合的驾驶行为识别方法能准确地识别出常见的驾驶行为。
Main constituent factors of driving behaviors are selected by analyses and their weighting coefficients are determined by analytic hierarchy process. Based on sensors" signals collected of each main factor, the driving behaviors are identified by adopting multi'sensor information fusion technique combining BP neural network with D-S evidence theory. The results of simulation show that the proposed technique for driving behavior identification based on information fusion can accurately identify common driving behaviors.
出处
《汽车工程》
EI
CSCD
北大核心
2012年第3期222-226,共5页
Automotive Engineering
基金
中央高校基本科研业务费专项资金项目(2011HGBZ1322)
合肥工业大学校基金(2009HGXJ0088)资助
关键词
驾驶行为识别
信息融合
BP神经网络
D-S证据理论
driving behavior identification
information fusion
BP neural network
D-S evidence theory