摘要
讨论了有序Banach空间E中的非线性常微分方程:u′(t)+Mu(t)=f(t,u(t)),(?)t∈R正ω-周期解的存在性,其中f:R×P→P连续,P为E中的正元锥.通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正ω-周期解的存在性结果.
The existence of positiveω-periodic solutions for order differential equations u'(t)+Mu(t)=f(t,u(t)),(?)t∈R in an ordered Banach spaces E is discussed,where f:R×P→P is continuous,and P is the cone of positive elements in E.An existence result of positiveω-periodic solutions is obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
出处
《系统科学与数学》
CSCD
北大核心
2012年第2期190-196,共7页
Journal of Systems Science and Mathematical Sciences
基金
陇东学院青年科技创新项目(XYZK1109)
关键词
闭凸锥
正ω-周期解
凝聚映射
不动点指数
Closed convex cone
positive periodic solution
condensing mapping
fixed point index