期刊文献+

有序Banach空间中常微分方程正周期解的存在性 被引量:1

EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR ORDER DIFFERENTIAL EQUATIONS IN ORDERED BANACH SPACES
原文传递
导出
摘要 讨论了有序Banach空间E中的非线性常微分方程:u′(t)+Mu(t)=f(t,u(t)),(?)t∈R正ω-周期解的存在性,其中f:R×P→P连续,P为E中的正元锥.通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正ω-周期解的存在性结果. The existence of positiveω-periodic solutions for order differential equations u'(t)+Mu(t)=f(t,u(t)),(?)t∈R in an ordered Banach spaces E is discussed,where f:R×P→P is continuous,and P is the cone of positive elements in E.An existence result of positiveω-periodic solutions is obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
作者 李小龙
出处 《系统科学与数学》 CSCD 北大核心 2012年第2期190-196,共7页 Journal of Systems Science and Mathematical Sciences
基金 陇东学院青年科技创新项目(XYZK1109)
关键词 闭凸锥 正ω-周期解 凝聚映射 不动点指数 Closed convex cone positive periodic solution condensing mapping fixed point index
  • 相关文献

参考文献8

二级参考文献44

  • 1余庆余.半序Banach空间中凝聚映射及其正不动点[J].兰州大学学报:自然科学版,1979,(2):1-5.
  • 2[1]Leela, S., Monotone method for second order periodic boundary value problems, Nonlinear Anal.,7(1983), 349-355.
  • 3[2]Nieto, J. J., Nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl.,130(1988), 22-29.
  • 4[3]Cabada, A. & Nieto, J. J., A generation of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl., 151(1990), 181-189.
  • 5[4]Cabada, A., The method of lower and upper solutions for second, third, forth, and higher order boundary value problems, J. Math. Anal. Appl., 185(1994), 302-320.
  • 6[5]Gossez, J. P. & Omari, P., Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance, J. Diff. Equs., 94(1991), 67-82.
  • 7[6]Omari, P., Villari, G. & Zandin, F., Periodic solutions of Lienard equation with one-sided growth restrictions, J. Diff. Equs., 67(1987), 278-293.
  • 8[7]Ge, W. G., On the existence of harmonic solutions of lienard system, Nonlinear Anal., 16(1991),183-190.
  • 9[8]Mawhin, J. & Willem, M., Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Diff. Equs., 52(1984), 264-287.
  • 10[9]Zelati, V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 67(1987),400-413.

共引文献156

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部