期刊文献+

关于连续区间映射的敏感依赖性 被引量:3

ON SENSITIVE DEPENDENCE OF CONTINUOUS INTERVAL MAPPINGS
原文传递
导出
摘要 首先证明:若区间映射f是敏感依赖的,则f的拓扑熵ent(f)>0.然后通过引入一种扩张映射进一步证明了敏感依赖的区间映射的拓扑熵的下确界为0,即,上式中拓扑熵的下界0是最优的.最后通过实例展示稠混沌、Spatio-temporal混沌、Li-Yorke敏感及敏感性之间是几乎互不蕴含的. In this paper,it is first proved that the topological entropy of f is positive provided that f is sensitive interval map.Then,by introducing of a kind of extended mappings, it is proved that the infimum of topological entropy of sensitive interval mappings is 0,which shows that the lower bound 0 of the topological entropy is optimal.Finally,some examples are given to show that dense chaos,Spatio-temporal chaos,Li-Yorke sensitivity and sensitivity are almost all independent.
出处 《系统科学与数学》 CSCD 北大核心 2012年第2期215-225,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10671134)资助课题
关键词 敏感依赖 稠混沌 Spatio-temporal混沌 Li-Yorke敏感 拓扑熵 Markov映射 Sensitive dependence dense chaos spatio-temporal chaos Li-Yorke sensitivity topological entropy Markov mappings
  • 相关文献

参考文献3

二级参考文献14

  • 1周作领,何伟弘.轨道结构的层次与拓扑半共轭[J].中国科学(A辑),1995,25(5):457-464. 被引量:17
  • 2[1]BARGE M,MARTIN J,CHAOS.Periodicity and snakelike continua[J].Trans.Amer.Math.Soc.,1985 (289):355 -365.
  • 3[2]DEVANEY R L.An introduction to chaotic dynamical systems[M].Redwood City:Addison-Wesley,1989.
  • 4[3]AKIN E,KOLYADA S.Li-Yorke sensitivity[J].Nonlinearity,2003 (16):1421-1433.
  • 5Li T Y,Yorke J.Period three implies chaos.Amer.Math.,1975,82:985-992.
  • 6Schaweizer B,Smftal J.Measure of chaos and a spectral decomposition of dynamical system on the interval.Trans.Amer.Sco.,1994,334:737-754.
  • 7Li Tianyan,Yorke J.Period 3 implies chaos[J].Amer.Math.Monthly,1975,82:985-992.
  • 8Devaney R.An Introduction to Chaotic Dynamcal Systems[M].New Yorke:Addison-Weslay,1989.
  • 9Huang Wen,Ye Xiangdong.Devaney chaos or 2-scattering implies Li-Yorke chaos[J].Top.Appl.,2002,117:259-272.
  • 10Banks J,Brooks J.On definition of chaos[J].Amer.Math.Monthly,1992,99:332-334.

共引文献9

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部