期刊文献+

椭圆系统的正解(英文)

Positive Solutions of Elliptic Systems
下载PDF
导出
摘要 本文主要研究在一些假设条件下拟线性方程组div(|▽ui|pi-2▽ui)+λki(|x|).fi(u1,…,un)=0,pi>1,i=1,…,n在环状区域径向正解的存在性及多重性.我们主要应用锥内的不动点定理. In this paper, we study the existence, multiplicity and nonexistence of positive radial so- lutions to boundary value problems for the system of quasilinear equations:div(|ui|pi-2 ui)+λκi(|x|)·f^i(u1,…,un)=0,P1〉1,i=1,…,n, in annular domains under general assumptions. Our methods employ fixed point theorems in a cone.
作者 侯万超
出处 《应用数学》 CSCD 北大核心 2012年第2期432-437,共6页 Mathematica Applicata
关键词 环状区域 不动点 Cone Annular domain Fixed point
  • 相关文献

参考文献10

  • 1Bandle C,Coffman C V,Mareus M. Nonlinear elliptic problems in annular domains[J].Differential Equations,1987.322-345.
  • 2Coffman C V,Kwong M. Semilinear elliptic problems in annular domains[J].Zeitschrift Fur Angewandte Mathematik Und Physik,1989.245-257.doi:10.1016/j.jfca.2009.12.005.
  • 3Coffman C V,Marcus M. Existence and uniqueness results for semilinear Dirichlet problems in annuli[J].Archive For Rational Mechanics and Analysis,1989.293-307.doi:10.1007/BF01041066.
  • 4Garaizar X. Existence of positive radial solutions for semilinear elliptic equations in the annulus[J].Differential Equations,1987.69-92.
  • 5GUO Dajun,Lakshmikantham V. Nonlinear Problems in Abstract Cones[M].Orlando,F L:Academic Press,1988.
  • 6Kwong M,ZHANG Liqun. Uniqueness of the positive solutions of △u+ f(u) =0,in an annulus[J].Differential and Integral Equations,1991.583-599.
  • 7WANG Haiyan. On the structure of positive radial solutions for quasilinear elliptic equations in annulus domains[J].Advances in Differential Equations,2003.111-128.
  • 8WANG Haiyan. Positive solutions for quasilinear systems in an annulars[J].Nonlinear Analysis,1985.279-319.
  • 9WANG Haiyan. On the number of positive solutions of nonlinear systems[J].Math Analysis,2003.287-306.
  • 10WANG Haiyan. On the number of positive solutions of elliptic systems[J].Mathematische Nachrichten,2007,(12):1417-1430.doi:10.1002/mana.200410555.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部